【題目】在某批次的某種燈泡中,隨機地抽取個樣品,并對其壽命進行追蹤調(diào)查,將結(jié)果列成頻率分布表如下.根據(jù)壽命將燈泡分成優(yōu)等品、正品和次品三個等級,其中壽命大于或等于天的燈泡是優(yōu)等品,壽命小于天的燈泡是次品,其余的燈泡是正品.

壽命(天)

頻數(shù)

頻率

合計

1)根據(jù)頻率分布表中的數(shù)據(jù),寫出、的值;

2)某人從燈泡樣品中隨機地購買了個,如果這個燈泡的等級情況恰好與按三個等級分層抽樣所得的結(jié)果相同,求的最小值;

3)某人從這個批次的燈泡中隨機地購買了個進行使用,若以上述頻率作為概率,用表示此人所購買的燈泡中次品的個數(shù),求的分布列和數(shù)學(xué)期望.

【答案】1,;(2;(3)分布列見解析,.

【解析】

1)根據(jù)頻數(shù)、頻率和樣本容量之間的關(guān)系可得出、的值;

2)由頻率分布表知按分層抽樣法,購買燈泡數(shù)個,由此能求出的最小值;

3的所有取值為、、,分別求出相對應(yīng)的概率,由此能求出的分布列和數(shù)學(xué)期望.

1)由題意可得,;

2)由表可知:燈泡樣品中優(yōu)等品有個,正品有個,次品有個,

優(yōu)等品、正品和次品的比例為,

按分層抽樣法,購買燈泡數(shù)為個,

因此,的最小值為;

3的所有取值為、,

由題意,購買一個燈泡,且這個燈泡是次品的概率為,

從本批次燈泡中購買個,可看成次獨立重復(fù)試驗,則.

,

.

所以,隨機變量的分布列如下表所示:

因此,隨機變量的數(shù)學(xué)期望為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C的參數(shù)方程是φ為參數(shù),a>0),直線l的參數(shù)方程是t為參數(shù)),曲線C與直線l有一個公共點在x軸上,以坐標原點為極點,x軸的正半軸為極軸建立坐標系.

1)求曲線C的普通方程;

2)若點Aρ1,θ),Bρ2θ),Cρ3,θ)在曲線C上,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形是直角梯形,,,,為線段的中點,平面,是線段的中點.

1)求證:∥平面;

2)求直線與平面所成的角的大小;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】 已知函數(shù)f(x)=|xa|+|x-2|.

(1)a=-3時,求不等式f(x)≥3的解集;

(2)f(x)≤|x-4|的解集包含[1,2],求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列的定義為:在一個數(shù)列中,從第二項起,如果每一項與它的前一項的差都為同一個常數(shù),那么這個數(shù)叫做等差數(shù)列,這個常數(shù)叫做該數(shù)列的公差.類比等差數(shù)列的定義給出等和數(shù)列的定義:_____________________________________;已知數(shù)列是等和數(shù)列,且,公和為,那么的值為____________.這個數(shù)列的前項和的計算公式為_____________________________________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為矩形,,側(cè)面為等邊三角形且垂直于底面,的中點.

(1)在棱上取一點使直線∥平面并證明;

(2)在(1)的條件下,當棱上存在一點,使得直線與底面所成角為時,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列,,,…,1,23,…,的一個排列,若互不相同,則稱數(shù)列具有性質(zhì).

1)若,且,寫出具有性質(zhì)的所有數(shù)列;

2)若數(shù)列具有性質(zhì),證明:;

3)當時,分別判斷是否存在具有性質(zhì)的數(shù)列?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某學(xué)校高三年級共1000名男生中隨機抽取50人測量身高,據(jù)測量,被測學(xué)生身高全部介于之間,將測量結(jié)果按如下方式分成八組:第一組,第二組,…,第八組.如圖是按上述分組方法得到的頻率分布直方圖的一部分.其中第六組、第七組、第八組人數(shù)依次構(gòu)成等差數(shù)列.

(1)求第六組、第七組的頻率,并估計高三年級全體男生身高在以上(含)的人數(shù);

(2)學(xué)校決定讓這五十人在運動會上組成一個高旗隊,在這五十人中要選身高在以上(含)的兩人作為隊長,求這兩人在同一組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市為了解本市1萬名小學(xué)生的普通話水平,在全市范圍內(nèi)進行了普通話測試,測試后對每個小學(xué)生的普通話測試成績進行統(tǒng)計,發(fā)現(xiàn)總體(這1萬名小學(xué)生普通話測試成績)服從正態(tài)分布.

(1)從這1萬名小學(xué)生中任意抽取1名小學(xué)生,求這名小學(xué)生的普通話測試成績在內(nèi)的概率;

(2)現(xiàn)在從總體中隨機抽取12名小學(xué)生的普通話測試成績,對應(yīng)的數(shù)據(jù)如下:50,52,56,62,63,68,65,64,72,80,67,90.從這12個數(shù)據(jù)中隨機選取4個,記表示大于總體平均分的個數(shù),求的方差.

參考數(shù)據(jù):若,則,.

查看答案和解析>>

同步練習(xí)冊答案