分析 (1)根據對數的運算性質,求得q,根據等比數列通項公式,即可求得數列{an}通項公式;
(2)根據等比數列及等差數列前n項和公式,即可求得數列{bn}的前n項和Sn.
解答 解:(1)由lg3•log3q=lg3×$\frac{lgq}{lg3}$=lgq=lg2.
則q=2,
則an=a1qn-1=2×2n-1=2n,
∴數列{an}通項公式an=2n;
(2)由bn=an+n=2n+n,
Sn=(21+1)+(22+2)+(22+3)+…+(2n+n),
=21+22+23+…+2n+1+2+3+…+n,
=$\frac{2(1-{2}^{n})}{1-2}$+$\frac{n(n+1)}{2}$,
=2n+1-2+$\frac{n(n+1)}{2}$,
∴數列{bn}的前n項和Sn=2n+1+$\frac{n(n+1)}{2}$-2.
點評 本題考查等比數列的性質,等比數列及等差數列的前n項和,考查計算能力,屬于基礎題.
科目:高中數學 來源: 題型:選擇題
A. | [-1,0] | B. | [-1,1) | C. | (-1,+∞) | D. | (0,1] |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (-4,-3,-1) | B. | (-4,-3,0) | C. | (-2,-1,0) | D. | (-2,-2,0) |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com