在平面直角坐標(biāo)系xOy中,已知圓C1:(x+3)2+(y-1)2=4和圓C2:(x-4)2+(y-5)2=4.

(1)若直線l過(guò)點(diǎn)A(4,0),且被圓C1截得的弦長(zhǎng)為2,求直線l的方程;
(2)設(shè)P為平面上的點(diǎn),滿(mǎn)足:存在過(guò)點(diǎn)P的無(wú)窮多對(duì)互相垂直的直線l1和l2,它們分別與圓C1和圓C2相交,且直線l1被圓C1截得的弦長(zhǎng)與直線l2被圓C2截得的弦長(zhǎng)相等,試求所有滿(mǎn)足條件的點(diǎn)P的坐標(biāo).
(1)y=0或7x+24y-28=0.(2)
(1)設(shè)直線l的方程為y=k(x-4),即kx-y-4k=0.由垂徑定理,得圓心C1到直線l的距離d==1,結(jié)合點(diǎn)到直線距離公式,得=1,化簡(jiǎn)得24k2+7k=0,解得k=0或k=-.
所求直線l的方程為y=0或y=-(x-4),即y=0或7x+24y-28=0.
(2)設(shè)點(diǎn)P坐標(biāo)為(m,n),直線l1、l2的方程分別為y-n=k(x-m),y-n=-(x-m),即kx-y+n-km=0,-x-y+n+m=0.
因?yàn)橹本l1被圓C1截得的弦長(zhǎng)與直線l2被圓C2截得的弦長(zhǎng)相等,兩圓半徑相等.由垂徑定理,得圓心C1到直線l1與圓心C2到直線l2的距離相等.故有,
化簡(jiǎn)得(2-m-n)k=m-n-3或(m-n+8)k=m+n-5.
因?yàn)殛P(guān)于k的方程有無(wú)窮多解,所以有
解得點(diǎn)P坐標(biāo)為.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知圓內(nèi)有一點(diǎn),過(guò)點(diǎn)作直線交圓,兩點(diǎn).
(1)當(dāng)經(jīng)過(guò)圓心時(shí),求直線的方程;
(2)當(dāng)弦被點(diǎn)平分時(shí),寫(xiě)出直線的方程.[

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

直線l與圓(x+1)2+(y-2)2=5-a(a<3)相交于兩點(diǎn)A,B,弦AB的中點(diǎn)為M(0,1) ,則直線l的方程為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知點(diǎn)A(1,2),B(3,1),則線段AB的垂直平分線的方程是(  ).
A.4x+2y-5=0
B.4x-2y-5=0
C.x+2y-5=0
D.x-2y-5=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

無(wú)論m為何值,直線:(2m+1)x+(m+1)y﹣7m﹣4=0恒過(guò)一定點(diǎn)P,則點(diǎn)P的坐標(biāo)為     

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

自點(diǎn)A(-3,3)發(fā)出的光線l射到x軸上,被x軸反射,反射光線所在的直線與圓C:x2+y2-4x-4y+7=0相切.求:
(1)光線l和反射光線所在的直線方程;
(2)光線自A到切點(diǎn)所經(jīng)過(guò)的路程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若動(dòng)點(diǎn)A、B分別在直線l1:x+y-7=0和l2:x+y-5=0上移動(dòng),則AB的中點(diǎn)M到原點(diǎn)的距離的最小值為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

兩平行直線x+3y-4=0與2x+6y-9=0的距離為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,射線OA,OB分別與x軸正半軸成45°和30°角,過(guò)點(diǎn)P(1,0)作直線AB分別交OA,OB于A,B兩點(diǎn),當(dāng)AB的中點(diǎn)C恰好落在直線y=x上時(shí),求直線AB的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案