已知數(shù)列中,的前項(xiàng)和,且的等差中項(xiàng),其中是不等于零的常數(shù).
(1)求; (2)猜想的表達(dá)式,并用數(shù)學(xué)歸納法加以證明.
(1),,;(2)見解析.
(1)先確定,然后要以先求出a1,進(jìn)而可以求出a2,a3;
(2)根據(jù)第(1)求出的結(jié)果進(jìn)行猜想.然后再利用數(shù)學(xué)歸納法證明時(shí)兩個(gè)步驟缺一不可. 
解: (1)由題意,                     
當(dāng)時(shí),, ∴ ;           
當(dāng)時(shí),,  ∴ ;     
當(dāng)時(shí),,   ∴ ; 
(2)猜想:.                      
證明:①當(dāng)時(shí),由(1)可知等式成立;            
②假設(shè)時(shí)等式成立,即:,
則當(dāng)時(shí),,
,  ∴, 
時(shí)等式也成立.                            
綜合①②知:對任意均成立.  
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)函數(shù)數(shù)列滿足:
(1)求;
(2)猜想的表達(dá)式,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

用數(shù)學(xué)歸納法證明不等式的過程中,由遞推到時(shí)的不等式左邊.
A.增加了項(xiàng)
B.增加了項(xiàng)
C.增加了“”,又減少了“
D.增加了,減少了“

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

用數(shù)學(xué)歸納法證明某命題時(shí),左式為(n為正偶數(shù)),從“n=2k”到“n=2k+2”左邊需增加的代數(shù)式為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

利用證明“ ”時(shí),從假設(shè)推證成立時(shí),可以在時(shí)左邊的表達(dá)式上再乘一個(gè)因式,多乘的這個(gè)因式為      ▲    

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

用數(shù)學(xué)歸納法證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

用數(shù)學(xué)歸納法證明 ()時(shí),第一步應(yīng)驗(yàn)證不等式(    )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

用數(shù)學(xué)歸納法證明不等式的過程中,
遞推到時(shí)的不等式左邊(   ).
A.增加了項(xiàng)B.增加了項(xiàng)
C.增加了“”,又減少了“
D.增加了,減少了“

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列,計(jì)算,猜想的表達(dá)式,并用數(shù)學(xué)歸納法證明猜想的正確性

查看答案和解析>>

同步練習(xí)冊答案