【題目】如圖,在四棱錐中,已知底面為菱形,,,為對角線的交點,底面

(1)求異面直線所成角的余弦值;

(2)求平面與平面所成銳二面角的余弦值.

【答案】(1);(2)

【解析】

根據(jù)底面為菱形得,利用線面垂直的性質(zhì)可得,從而以為坐標(biāo)原點建立空間直角坐標(biāo)系;(1)利用異面直線所成角的空間向量求法可求得結(jié)果;(2)分別得到兩個平面的法向量,根據(jù)二面角的空間向量求法可求得結(jié)果.

底面為菱形

底面,底面 ,

為坐標(biāo)原點可建立如圖所示的空間直角坐標(biāo)系

,

(1)設(shè)為異面直線所成的角,又,

異面直線所成的角的余弦值為:

(2)平面 平面的法向量取

設(shè)平面的法向量為,又,

,令,則,

設(shè)為兩個平面所成的銳二面角的平面角,則:

平面與平面所成銳二面角的余弦值為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的焦距為,且,圓軸交于點,,為橢圓上的動點,,面積最大值為.

(1)求圓與橢圓的方程;

(2)圓的切線交橢圓于點,,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有AB兩個投資項目,投資兩項目所獲得利潤分別是(萬元),它們與投入資金(萬元)的關(guān)系依次是:其中平方根成正比,且當(dāng)4(萬元)時1(萬元),又成正比,當(dāng)4(萬元)時也是1(萬元);某人甲有3萬元資金投資.

)分別求出,的函數(shù)關(guān)系式;

)請幫甲設(shè)計一個合理的投資方案,使其獲利最大,并求出最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】央視傳媒為了解央視舉辦的“朗讀者”節(jié)目的收視時間情況,隨機抽取了某市名觀眾進行調(diào)查,其中有名男觀眾和名女觀眾,將這名觀眾收視時間編成如圖所示的莖葉圖(單位:分鐘),收視時間在分鐘以上(包括分鐘)的稱為“朗讀愛好者”,收視時間在分鐘以下(不包括分鐘)的稱為“非朗讀愛好者”.

(1)若采用分層抽樣的方法從“朗讀愛好者”和“非朗讀愛好者”中隨機抽取名,再從這名觀眾中任選名,求至少選到名“朗讀愛好者”的概率;

(2)若從收視時間在40分鐘以上(包括40分鐘)的所有觀眾中選出男、女觀眾各1名,求選出的這兩名觀眾時間相差5分鐘以上的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線上的點均在曲線外,且對上任意一點,到直線的距離等于該點與曲線上點的距離的最小值.

(1)求動點的軌跡的方程;

(2)過點的直線與曲線交于不同的兩點,過點的直線與曲線交于另一點,且直線過點,求證:直線過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國南北朝時間著名數(shù)學(xué)家祖暅提出了祖暅原理:“冪勢既同,則積不容異”.意思是:夾在兩平行平面間的兩個幾何體,被平行于這兩個平行平面的任何平面所載,若截得的兩個截面面積總相等,則這兩個幾何體的體積相等.為計算球的體積,構(gòu)造一個底面半徑和高都與球半徑相等的圓柱,然后再圓柱內(nèi)挖去一個以圓柱下底面圓心為頂點,圓柱上底面為底面的圓錐,運用祖暅原理可證明此幾何體與半球體積相等(任何一個平面所載的兩個截面面積都相等).將橢圓 軸旋轉(zhuǎn)一周后得一橄欖狀的幾何體,類比上述方法,運用祖暅原理可求得其體積等于( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列結(jié)論中:

定義在R上的函數(shù)f(x)在區(qū)間(-∞,0]上是增函數(shù),在區(qū)間[0,+∞)上也是增函數(shù),則函數(shù)f(x)R上是增函數(shù);f(2)=f(-2),則函數(shù)f(x)不是奇函數(shù);函數(shù)y=x-0.5(0,1)上的減函數(shù);對應(yīng)法則和值域相同的函數(shù)的定義域也相同;x0是二次函數(shù)y=f(x)的零點,m<x0<n,那么f(m)f(n)<0一定成立.

寫出上述所有正確結(jié)論的序號:_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng),時,求滿足的值;

(2)若函數(shù)是定義在上的奇函數(shù).

①存在,使得不等式有解,求實數(shù)的取值范圍;

②若函數(shù)滿足,若對任意,不等式恒成立,求實數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)習(xí)小組在暑期社會實踐活動中,通過對某商店一種商品銷售情況的調(diào)查發(fā)現(xiàn):該商品在過去的一個月內(nèi)(以30天計)的日銷售價格(元)與時間(天)的函數(shù)關(guān)系近似滿足為正常數(shù)).該商品的日銷售量(個)與時間(天)部分?jǐn)?shù)據(jù)如下表所示:

(天)

10

20

25

30

(個)

110

120

125

120

已知第10天該商品的日銷售收入為121.

I)求的值;

II)給出以下二種函數(shù)模型:

,②,

請你根據(jù)上表中的數(shù)據(jù),從中選擇你認為最合適的一種函數(shù)來描述該商品的日銷售量與時間的關(guān)系,并求出該函數(shù)的解析式;

III)求該商品的日銷售收入(元)的最小值.

(函數(shù),在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增.性質(zhì)直接應(yīng)用.

查看答案和解析>>

同步練習(xí)冊答案