11.要從8名男醫(yī)生和7名女醫(yī)生中選5人組成一個(gè)醫(yī)療隊(duì),如果其中至少有2名男醫(yī)生和至少有2名女醫(yī)生,則不同的選法種數(shù)為( 。
A.(C${\;}_{8}^{3}$+C${\;}_{7}^{2}$)(C${\;}_{7}^{3}$+C${\;}_{8}^{2}$)B.(C${\;}_{8}^{3}$+C${\;}_{7}^{2}$)+(C${\;}_{7}^{3}$+C${\;}_{8}^{2}$)
C.C${\;}_{8}^{3}$C${\;}_{7}^{2}$+C${\;}_{7}^{3}$C${\;}_{8}^{2}$D.C${\;}_{8}^{3}$C${\;}_{7}^{2}$+C${\;}_{7}^{3}$+C${\;}_{11}^{1}$

分析 醫(yī)療小分隊(duì)至少要2名男醫(yī)生和2名女醫(yī)生,共有2種結(jié)果,包括三男兩女,有C83C72=1176種,兩男三女,有C82C73=980種,相加得到結(jié)果.

解答 解:醫(yī)療小分隊(duì)至少要2名男醫(yī)生和2名女醫(yī)生,共有2種情況,包括:
三男兩女,有C83C72種,
兩男三女,有C82C73種,
共計(jì)C${\;}_{8}^{3}$C${\;}_{7}^{2}$+C${\;}_{7}^{3}$C${\;}_{8}^{2}$種,
故選:C.

點(diǎn)評(píng) 本題考查排列組合的實(shí)際應(yīng)用,本題解題的關(guān)鍵是理解題意,看出符合條件的事件可以怎么表述的清楚,能夠做到不重不漏,本題是一個(gè)中檔題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.P為雙曲線2x2-y2=2右支上一點(diǎn),F(xiàn)1,F(xiàn)2分別為左右焦點(diǎn),I為△PF1F2的內(nèi)心,若S${\;}_{△P{F}_{1}{F}_{2}}$=2S${\;}_{△IP{F}_{2}}$+(1+$\frac{1}{λ}$)S${\;}_{△I{F}_{1}{F}_{2}}$,則實(shí)數(shù)λ的值為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如果復(fù)數(shù)$\overline{z}=\frac{2}{-1+i}$,則( 。
A.|z|=2B.z的實(shí)部為1
C.z的虛部為-1D.z的共軛復(fù)數(shù)為-1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.某幾何體的三視圖如圖,則該幾何體的體積為( 。
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在△ABC中(圖),$A=\frac{π}{3},cosC=\frac{{2\sqrt{7}}}{7},BC=\sqrt{7}$,線段AC上點(diǎn)D滿足AD=2DC.
(Ⅰ)求sin∠ABC及邊AC的長(zhǎng);
(Ⅱ)求sin∠CBD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在R上定義運(yùn)算?:x?y=$\frac{x}{2-y}$,若關(guān)于x的不等式:(x-a)?(x+1-a)>0的解集是集合{x|-2≤x≤2}的子集,則實(shí)數(shù)a的取值范圍是[-2,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=ex+ax,g(x)=ax-lnx,其中 a<0.
(1)若函數(shù)f(x)是(l,ln 5)上的單調(diào)函數(shù),求a的取值范圍;
(2)若存在區(qū)間M,使f(x)和g(x)在區(qū)間M上具有相同的單調(diào)性,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知P(1,1)為橢圓2x2+y2=4內(nèi)一定點(diǎn),過P引一條弦,使此弦以P為中點(diǎn),則弦所在的直線方程2x+y-3=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.某校開設(shè)A類選修課3門,B類選修課3門,一位同學(xué) 從中選3門.若要求兩類課程中各至少選一門,則不同的選法共有( 。
A.3種B.6種C.9種D.18種

查看答案和解析>>

同步練習(xí)冊(cè)答案