已知圓C與x軸相切,圓心在直線y=3x上,且被直線2x+y-10=0截得的弦長為4,
求此圓的方程.
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的參數(shù)方程為(為參數(shù)),曲線的極坐標(biāo)方程為
.
(Ⅰ)將曲線的參數(shù)方程化為普通方程,將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)曲線,是否相交,若相交請求出公共弦的長,若不相交,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓x2+y2+2ax-2ay+2a2-4a=0(0<a≤4)的圓心為C,直線l:y=x+m.
(1)若m=4,求直線l被圓C所截得弦長的最大值;
(2)若直線l是圓心下方的切線,當(dāng)a在的變化時,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,直角三角形的頂點坐標(biāo),直角頂點,頂點在軸上,點為線段的中點
(1)求邊所在直線方程;(2)圓是△ABC的外接圓,求圓的方程;
(3)若DE是圓的任一條直徑,試探究是否是定值?
若是,求出定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
19.(本小題滿分8分)已知,過點M(-1,1)的直線l被圓C:x2 + y2-2x + 2y-14 = 0所截得的弦長為4,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
雙曲線=1(a>0,b>0)的右焦點是拋物線y2=8x的焦點F,兩曲線的一個公共點為P,且|PF| =5,則此雙曲線的離心率為( )
A. | B. | C.2 | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分8分)已知點、的坐標(biāo)分別為、,動點滿足.
(1)求點的軌跡的方程;
(2)過點作直線與軌跡相切,求切點的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com