精英家教網 > 高中數學 > 題目詳情

【題目】已知曲線C的參數方程為 (θ為參數).以原點O為極點,x軸的非負半軸為極軸建立極坐標方程.
(1)求曲線C的極坐標方程;
(2)若直線l:θ=α(α∈[0,π),ρ∈R)與曲線C相交于A,B兩點,設線段AB的中點為M,求|OM|的最大值.

【答案】
(1)解:曲線C的普通方程為(x+1)2+(y﹣1)2=4,

由x=ρcosθ,y=ρsinθ,得ρ2+2ρcosθ﹣2ρsinθ﹣2=0.


(2)解:聯(lián)立θ=α和ρ2+2ρcosθ﹣2ρsinθ﹣2=0,

得ρ2+2ρ(cosα﹣sinα)﹣2=0,

設A(ρ1,α),B(ρ2,α),

則ρ12=2(cosα﹣sinα)=2 ,

由|OM|= ,得|OM|= ,

當α= 時,|OM|取最大值


【解析】( I)利用平方關系可得曲線C的普通方程,把x=ρcosθ,y=ρsinθ,代入即可得出.(II)聯(lián)立θ=α和ρ2+2ρcosθ﹣2ρsinθ﹣2=0,得ρ2+2ρ(cosα﹣sinα)﹣2=0,設A(ρ1 , α),B(ρ2 , α),可得ρ12=2(cosα﹣sinα)=2 ,即可得出.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知x∈(1,+∞),函數f(x)=ex+2ax(a∈R),函數g(x)=| ﹣lnx|+lnx,其中e為自然對數的底數.
(1)若a=﹣ ,求函數f(x)的單調區(qū)間;
(2)證明:當a∈(2,+∞)時,f′(x﹣1)>g(x)+a.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x2﹣2|x﹣a|.
(1)若函數y=f(x)為偶函數,求a的值;
(2)若a= ,求函數y=f(x)的單調遞增區(qū)間;
(3)當a>0時,若對任意的x∈(0,+∞),不等式f(x﹣1)≤2f(x)恒成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}滿足a1=1,a2=4,且對任意m,n,p,q∈N* , 若m+n=p+q,則有am+an=ap+aq . (Ⅰ)求數列{an}的通項公式;
(Ⅱ)設數列{ }的前n項和為Sn , 求證: ≤Sn

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數

1若不等式的解集為,求實數、的值;

2解不等式

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列的前n項和Snn2n .

(1)求數列的通項公式an

(2)令 ,求數列{bn}的前n項和為Tn .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖是函數在區(qū)間上的圖象,為了得到這個函數的圖象,只需將y=sinx的圖象

A. 向左平移個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?/span>,縱坐標不變

B. 向左平移至個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?倍,縱坐標不變

C. 向左平移個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?/span>,縱坐標不變

D. 向左平移個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?倍,縱坐標不變

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知命題p:x>1, x>0,命題q:x∈R,x3>3x , 則下列命題為真命題的是(
A.p∧q
B.p∨(¬q)
C.p∧(¬q)
D.(¬p)∧q

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率為, 傾斜角為的直線經過橢圓的右焦點且與圓相切.

(1)求橢圓 的方程;

(2)若直線與圓相切于點, 且交橢圓兩點,射線于橢圓交于點,設的面積與的面積分別為.

①求的最大值; ②當取得最大值時,求的值.

查看答案和解析>>

同步練習冊答案