13.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-x,x≤0}\\{{x}^{2}+2,x>0}\end{array}\right.$,則f(f(-1))的值為( 。
A.1B.2C.3D.4

分析 先求出f(-1)=-(-1)=1,從而f(f(-1))=f(1),由此能求出結(jié)果.

解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{-x,x≤0}\\{{x}^{2}+2,x>0}\end{array}\right.$,
∴f(-1)=-(-1)=1,
f(f(-1))=f(1)=12+2=3.
故選:C.

點(diǎn)評(píng) 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)y=sin2x-4sinx+1的值域?yàn)椋ā 。?table class="qanwser">A.[-5,-2]B.[-5,6]C.[-2,2]D.[-2,6]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,點(diǎn)A是BCD所在平面外一點(diǎn),AD=BC,E、F分別是 AB、CD的中點(diǎn),且EF=$\frac{{\sqrt{2}}}{2}$AD,求異面直線AD和BC所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知點(diǎn)A(-1,0),B(1,0),直線AM與直線BM相交于點(diǎn)M,直線AM與直線BM的斜率分別記為kAM與kBM,且kAM•kBM=-2
(Ⅰ)求點(diǎn)M的軌跡C的方程;
(Ⅱ)過定點(diǎn)F(0,1)作直線PQ與曲線C交于P,Q兩點(diǎn),△OPQ的面積是否存在最大值?若存在,求出△OPQ面積的最大值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.612,840,468的最大公約數(shù)為( 。
A.2B.4C.12D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.關(guān)于下列命題:
①若函數(shù)y=2x+1的定義域是{x|x≤0},則它的值域是{y|y≤1};
②若函數(shù)y=$\frac{1}{x}$的定義域是{x|x>2},則它的值域是{y|y≤$\frac{1}{2}$};
③若函數(shù)y=x2的值域是{y|0≤y≤4},則它的定義域一定是{x|-2≤x≤2};
④若函數(shù)y=x+$\frac{1}{x}$的定義域是{x|x<0},則它的值域是{y|y≤-2}.
其中不正確的命題的序號(hào)是②③.(注:把你認(rèn)為不正確的命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)f(x)在(0,+∞)上為增函數(shù),則不等式f(x)>f(8x-16)的解集為(  )
A.(2,$\frac{16}{7}$)B.(-∞,2)C.($\frac{16}{7}$,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=$\frac{x+a}{3x-2}$,x∈[1,4],且f(1)=2.
(1)求函數(shù)的解析式并證明函數(shù)的單調(diào)性;
(2)求函數(shù)y=f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.根據(jù)如圖框圖,當(dāng)輸入x為9時(shí),輸出的y=( 。
A.1B.2C.5D.10

查看答案和解析>>

同步練習(xí)冊(cè)答案