【題目】設(shè)函數(shù).
(Ⅰ)討論的單調(diào)性;
(Ⅱ)當(dāng)時, .
【答案】(Ⅰ) 見解析;(Ⅱ) 見解析.
【解析】試題分析:(Ⅰ) 求導(dǎo)得,分, , 三種情況討論可得的單調(diào)區(qū)間.
(Ⅱ)當(dāng)時, 和可得所有的, ;
當(dāng)時,易知上均有.
只需考慮時,此時,分和兩種情況討論即可.
試題解析:(Ⅰ) .
①當(dāng)時, ,當(dāng)時, ,
當(dāng)時, .當(dāng)時, .∴在遞增
②當(dāng)時,令,得,此時.
易知在遞增, 遞減, 遞增
③當(dāng)時, .易知在遞增, 遞減, 遞增
(Ⅱ)當(dāng)時, ,
①若時,可知,
②若時,由(Ⅰ)知在上單調(diào)遞增,則有
因此,當(dāng)時,對所有的, ;
當(dāng)時,由(Ⅰ)可知易知在遞增, 遞減, 遞增,
且,因此在上均有.
下面考慮時,此時
,其中, .
設(shè),則
①若,則, ,而
∴,∴,即.
此時在遞增,故;
②若,則
由①②可知,二次函數(shù).
因此在時,總有.
綜上,當(dāng)時,對所有的, .
點晴:本題主要考查函數(shù)單調(diào)性,不等式恒成立證明問題.要求單調(diào)性,求導(dǎo)比較導(dǎo)方程的根的大小,解不等式可得單調(diào)區(qū)間,要證明不等式恒成立問題,我們可以先根據(jù)題意構(gòu)造新函數(shù),求其值最值即可.這類問題的通解方法就是:劃歸與轉(zhuǎn)化之后,就可以假設(shè)相對應(yīng)的函數(shù),然后利用導(dǎo)數(shù)研究這個函數(shù)的單調(diào)性、極值和最值,圖像與性質(zhì),進而求解得結(jié)果.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】不等式ax2﹣2x+1>0對x∈( ,+∞)恒成立,則a的取值范圍為( )
A.(0,+∞)
B.(1,+∞)
C.(0,1)
D.[1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,動圓與圓外切,且與直線相切,記圓心的軌跡為曲線.
(1)求曲線的方程;
(2)設(shè)過定點(為非零常數(shù))的動直線與曲線交于兩點,問:在曲線上是否存在點(與兩點相異),當(dāng)直線的斜率存在時,直線的斜率之和為定值.若存在,求出點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 =(1,2), =(2,﹣2).
(1)設(shè) =4 + ,求 ;
(2)若 + 與 垂直,求λ的值;
(3)求向量 在 方向上的投影.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有下列說法:
①y=sinx+cosx在區(qū)間(﹣ , )內(nèi)單調(diào)遞增;
②存在實數(shù)α,使sinαcosα= ;
③y=sin( +2x)是奇函數(shù);
④x= 是函數(shù)y=cos(2x+ )的一條對稱軸方程.
其中正確說法的序號是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2sin cos ﹣2 sin2 +
(1)求函數(shù)f(x)的單調(diào)減區(qū)間
(2)已知α∈( , ),且f(α)= ,求f( )的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是菱形,且,點是棱的中點,平面與棱交于點.
()求證: .
()若,且平面平面,
求①二面角的銳二面角的余弦值.
②在線段上是否存在一點,使得直線與平面所成角等于,若存在,確定的位置,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線的參數(shù)方程為: ,以平面直角坐標(biāo)系xOy的原點O為極點,x軸的正半軸為極軸,取相同的長度單位建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.
(1)求直線和曲線C的普通方程;
(2)在直角坐標(biāo)系中,過點B(0,1)作直線的垂線,垂足為H,試以為參數(shù),求動點H軌跡的參數(shù)方程,并指出軌跡表示的曲線.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com