【題目】將下列問題的解答過程補(bǔ)充完整.
依次計(jì)算數(shù)列,,,,…的前四項(xiàng)的值,由此猜測(cè)的有限項(xiàng)的表達(dá)式,并用數(shù)學(xué)歸納法加以證明.
解:計(jì)算 ,
,
① ,
② ,
由此猜想 ③ .(*)
下面用數(shù)學(xué)歸納法證明這一猜想.
(i)當(dāng)時(shí),左邊,右邊,所以等式成立.
(ⅱ)假設(shè)當(dāng)時(shí),等式成立,即
④ .
那么,當(dāng)時(shí),
⑤
⑥
⑦ .
等式也成立.
根據(jù)(i)和(ⅱ)可以斷定,(*)式對(duì)任何都成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),曲線在點(diǎn)處的切線方程為.
(1)求的解析式;
(2)判斷方程在內(nèi)的解的個(gè)數(shù),并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
已知橢圓:的左、右頂點(diǎn)分別為A,B,其離心率,點(diǎn)為橢圓上的一個(gè)動(dòng)點(diǎn),面積的最大值是.
(1)求橢圓的方程;
(2)若過橢圓右頂點(diǎn)的直線與橢圓的另一個(gè)交點(diǎn)為,線段的垂直平分線與軸交于點(diǎn),當(dāng)時(shí),求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】類比平面幾何中的定理:△ABC中,若DE是△ABC的中位線,則有S△ADE∶S△ABC=1∶4;若三棱錐A-BCD有中截面EFG∥平面BCD,則截得三棱錐的體積與原三棱錐體積之間的關(guān)系式為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將圓周上的所有點(diǎn)進(jìn)行三染色。證明:存在無窮多個(gè)等腰三角形,其頂點(diǎn)均為圓周上的同色點(diǎn)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在處的切線方程為,求實(shí)數(shù),的值;
(2)若函數(shù)在和兩處取得極值,求實(shí)數(shù)的取值范圍;
(3)在(2)的條件下,若,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:()和圓:,分別是橢圓的左、右兩焦點(diǎn),過且傾斜角為()的動(dòng)直線交橢圓于兩點(diǎn),交圓于兩點(diǎn)(如圖所示,點(diǎn)在軸上方).當(dāng)時(shí),弦的長為.
(1)求圓與橢圓的方程;
(2)若依次成等差數(shù)列,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,將邊長為2的正方形ABCD沿PD、PC翻折至A、B兩點(diǎn)重合,其中P是AB中點(diǎn),在折成的三棱錐A(B)-PDC中,點(diǎn)Q在平面PDC內(nèi)運(yùn)動(dòng),且直線AQ與棱AP所成角為60,則點(diǎn)Q運(yùn)動(dòng)的軌跡是
A. 圓 B. 橢圓 C. 雙曲線 D. 拋物線
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com