【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )圖象如圖所示,則下列關于函數(shù) f (x)的說法中正確的是(
A.對稱軸方程是x= +kπ(k∈Z)
B.對稱中心坐標是( +kπ,0)(k∈Z)
C.在區(qū)間(﹣ )上單調遞增
D.在區(qū)間(﹣π,﹣ )上單調遞減

【答案】D
【解析】解:由圖可知A=1, ,則T=2π =
故ω=1,
∵圖象過(﹣ ,0)點,
,
,
∵|φ|< ),
∴φ=
故得函數(shù)f(x)=sin(x+ ).
根據正弦函數(shù)的對稱軸,可得:x+ = ,(k∈Z),解得:x= ,(k∈Z),∴A不對.
根據正弦函數(shù)的對稱中心,由:x+ =kπ,(k∈Z),解得:x=
∴對稱中心坐標是(kπ ,0)(k∈Z)∴B不對.
根據正弦函數(shù)的性質,當 ≤x+ ,即 時,函數(shù)單調遞增,∴C不對.
≤x+ ,即 時,函數(shù)在區(qū)間(﹣π,﹣ )上單調遞減,∴D對.
故選D.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】閱讀如圖所示的程序框圖,則該算法的功能是(
A.計算數(shù)列{2n1}前5項的和
B.計算數(shù)列{2n﹣1}前5項的和
C.計算數(shù)列{2n1}前6項的和
D.計算數(shù)列{2n﹣1}前6項的和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在邊長為4的菱形ABCD中,∠DAB=60°,點E,F(xiàn)分別是邊CD,CB的中點,AC∩EF=O,沿EF將△CEF翻折到△PEF,連接PA,PB,PD,得到如圖的五棱錐,且
(1)求證:BD⊥平面POA;
(2)求二面角B﹣AP﹣O的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設實數(shù)a,b滿足a+2b=9.
(1)若|9﹣2b|+|a+1|<3,求a的取值范圍;
(2)若a,b>0,且z=ab2 , 求z的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線E:y2=2px(p>0)的焦點為F,過F且垂直于x軸的直線與拋物線E交于A,B兩點,E的準線與x軸交于點C,△CAB的面積為4,以點D(3,0)為圓心的圓D過點A,B. (Ⅰ)求拋物線E和圓D的方程;
(Ⅱ)若斜率為k(|k|≥1)的直線m與圓D相切,且與拋物線E交于M,N兩點,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知{an}為等比數(shù)列,a1=1,a4=27; Sn為等差數(shù)列{bn} 的前n 項和,b1=3,S5=35.
(1)求{an}和{bn} 的通項公式;
(2)設數(shù)列{cn} 滿足cn=anbn(n∈N*),求數(shù)列{cn} 的前n 項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|x+m|+|2x﹣1|(m∈R) (I)當m=﹣1時,求不等式f(x)≤2的解集;
(II)設關于x的不等式f(x)≤|2x+1|的解集為A,且[ ,2]A,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校為了解該校高三年級學生數(shù)學科學習情況,對廣一?荚嚁(shù)學成績進行分析,從中抽取了n 名學生的成績作為樣本進行統(tǒng)計(該校全體學生的成績均在[60,140),按照[60,70),[70,80),[80,90),[90,100),[100,110),[110,120),[120,130),[130,140)的分組作出頻率分布直方圖如圖1所示,樣本中分數(shù)在[70,90)內的所有數(shù)據的莖葉圖如圖2所示.
根據上級統(tǒng)計劃出預錄分數(shù)線,有下列分數(shù)與可能被錄取院校層次對照表為表( c ).

分數(shù)

[50,85]

[85,110]

[110,150]

可能被錄取院校層次

?

本科

重本


(1)求n和頻率分布直方圖中的x,y的值;
(2)根據樣本估計總體的思想,以事件發(fā)生的頻率作為概率,若在該校高三年級學生中任取3 人,求至少有一人是可能錄取為重本層次院校的概率;
(3)在選取的樣本中,從可能錄取為重本和?苾蓚層次的學生中隨機抽取3 名學生進行調研,用ξ表示所抽取的3 名學生中為重本的人數(shù),求隨機變量ξ的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓E: + =1(a>b>0)過點 ,且離心率e為
(1)求橢圓E的方程;
(2)設直線x=my﹣1(m∈R)交橢圓E于A,B兩點,判斷點G 與以線段AB為直徑的圓的位置關系,并說明理由.

查看答案和解析>>

同步練習冊答案