精英家教網 > 高中數學 > 題目詳情

已知兩定點,,動點滿足,由點軸作垂線段,垂足為,點滿足,點的軌跡為.
(1)求曲線的方程;
(2)過點作直線與曲線交于,兩點,點滿足為原點),求四邊形面積的最大值,并求此時的直線的方程.

(1) (2) 直線的方程為

解析試題分析:解(1)動點P滿足,點P的軌跡是以E F為直徑的圓,動點P的軌跡方程為.設M(x,y)是曲線C上任一點,因為PMx軸,點P的坐標為(x,2y), 點P在圓上,  ,
曲線C的方程是 .
(2)因為,所以四邊形OANB為平行四邊形,
當直線的斜率不存在時顯然不符合題意;
當直線的斜率存在時,設直線的方程為y=kx-2,與橢圓交于兩點,由
,由,得,即


     10分


,,解得,滿足,
,(當且僅當時“=”成立)
平行四邊形OANB面積的最大值為2.
所求直線的方程為
考點:圓錐曲線方程的求解和運用
點評:主要是考查了運用代數的方法來通過向量的數量積的公式,以及聯(lián)立方程組,結合韋達定理來求解,屬于中檔題。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

如圖,已知橢圓的左焦點為F,過點F的直線交橢圓于A、B兩點,線段AB的中點為G,AB的中垂線與x軸和y軸分別交于D、E兩點.

(Ⅰ)若點G的橫坐標為,求直線AB的斜率;
(Ⅱ)記△GFD的面積為S1,△OED(O為原點)的面積為S2
試問:是否存在直線AB,使得S1=S2?說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

中心在坐標原點,焦點在軸上的橢圓的離心率為,且經過點。若分別過橢圓的左右焦點、的動直線相交于P點,與橢圓分別交于A、B與C、D不同四點,直線OA、OB、OC、OD的斜率、滿足

(1)求橢圓的方程;
(2)是否存在定點M、N,使得為定值.若存在,求出M、N點坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

若雙曲線的離心率等于,直線與雙曲線的右支交于兩點.
(1)求的取值范圍;
(2)若,點是雙曲線上一點,且,求

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

過拋物線的焦點作傾斜角為的直線交拋物線于、兩點,過點作拋物線的切線軸于點,過點作切線的垂線交軸于點。

(1) 若,求此拋物線與線段以及線段所圍成的封閉圖形的面積。
(2) 求證:;

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在極坐標系中,已知圓經過點,圓心為直線與極軸的交點,求圓的極坐標方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題


已知拋物線和橢圓都經過點,它們在軸上有共同焦點,橢圓的對稱軸是坐標軸,拋物線的頂點為坐標原點.
(1)求這兩條曲線的方程;
(2)對于拋物線上任意一點,點都滿足,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

雙曲線=1(a>0,b>0)的離心率為2,坐標原點到直線AB的距離為,其中A(0,-b),B(a,0).
(1)求雙曲線的標準方程;
(2)設F是雙曲線的右焦點,直線l過點F且與雙曲線的右支交于不同的兩點P、Q,點M為線段PQ的中點.若點M在直線x=-2上的射影為N,滿足·=0,且||=10,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

若橢圓的中心在原點,焦點在軸上,短軸的一個端點與左右焦點組成一個正三角形,焦點到橢圓上的點的最短距離為.
(1)求橢圓的方程;
(2)過點作直線與橢圓交于、兩點,線段的中點為,求直線的斜率的取值范圍.

查看答案和解析>>

同步練習冊答案