已知拋物線y2=4x截直線y=2x+b所得的弦長為|AB|=3
5

(1)求b的值;
(2)在x軸上求一點P,使△APB的面積為39.
(1)聯(lián)立方程組
y 2=4x
y=2x+b
,消去y得方程:4x2+(4b-4)x+b2=0
x1+x2=1-b.x1x2=
b 2
4

|AB|=
5
(x 1+x 2) 2-4x 1x 2
=
5
(1-b) 2-b 2
=3
5

解得b=-4--------------------(8分)
(2)將b=-4代入直線y=2x+b得AB所在的直線方程為2x-y-4=0
設(shè)P(a,0),則P到直線AB的距離為d=
|2a-4|
5
;
△APB的面積S=
1
2
×
|2a-4|
5
×3
5
=39
則a=-11或15
所以P點的坐標(biāo)為(-11,0)或(15,0)------------(16分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=4x的焦點為F,其準線與x軸交于點M,過M作斜率為k的直線與拋物線交于A、B兩點,弦AB的中點為P,AB的垂直平分線與x軸交于點E(x0,0).
(1)求k的取值范圍;
(2)求證:x0>3;
(3)△PEF能否成為以EF為底的等腰三角形?若能,求此k的值;若不能,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線
y
2
 
=4x
的焦點為F,過點A(4,4)作直線l:x=-1垂線,垂足為M,則∠MAF的平分線所在直線的方程為
x-2y+4=0
x-2y+4=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=4x,焦點為F,頂點為O,點P(m,n)在拋物線上移動,Q是OP的中點,M是FQ的中點.
(1)求點M的軌跡方程.
(2)求
nm+3
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=4x與直線2x+y-4=0相交于A、B兩點,拋物線的焦點為F,那么|
FA
|+|
FB
|
=
7
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=4x,其焦點為F,P是拋物線上一點,定點A(6,3),則|PA|+|PF|的最小值是
7
7

查看答案和解析>>

同步練習(xí)冊答案