A. | $-\frac{1}{5}$ | B. | $-\frac{3}{7}$ | C. | $\frac{1}{5}$ | D. | $\frac{3}{7}$ |
分析 由已知利用誘導公式,同角三角函數基本關系式化簡即可得解.
解答 解:∵α∈(-π,-$\frac{π}{2}}$),tan(π-α)=-tanα=-$\frac{2}{3}$,可得:tanα=$\frac{2}{3}$,
∴$\frac{{cos({-α})+3sin({π+α})}}{{cos({π-α})+9sinα}}$=$\frac{cosα-3sinα}{-cosα+9sinα}$=$\frac{1-3tanα}{9tanα-1}$=$\frac{1-3×\frac{2}{3}}{9×\frac{2}{3}-1}$=-$\frac{1}{5}$.
故選:A.
點評 本題主要考查了誘導公式,同角三角函數基本關系式在三角函數化簡求值中的應用,考查了轉化思想,屬于基礎題.
科目:高中數學 來源: 題型:選擇題
A. | 函數f(x)的最小正周期為4 | B. | f(1)<f(3) | ||
C. | f(2016)=0 | D. | 函數f(x)在區(qū)間[-6,-4]上單調遞減 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 160 cm2 | B. | 320 cm2 | C. | 40$\sqrt{89}$cm2 | D. | 80$\sqrt{89}$cm2 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -110 | B. | -90 | C. | 90 | D. | 110 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com