2.定義在實數(shù)R上的函數(shù)y=f(x)是偶函數(shù),當x≥0時,f(x)=-4x2+8x-3.
(Ⅰ)求f(x)在R上的表達式;
(Ⅱ)在給出的坐標系中作出y=f(x)的圖象,并寫出f(x)最大值和f(x)在R上的單調(diào)區(qū)間.

分析 (Ⅰ)x<0時,-x>0,代入已知x≥0時,f(x)=-4x2+8x-3,可得f(-x)=-4x2-8x-3,根據(jù)偶函數(shù)的性質(zhì)可求得f(x)=-4x2-8x-3;
(Ⅱ)根據(jù)解析式可作出y=f(x)的圖象,根據(jù)二次函數(shù)的單調(diào)性分別求解兩段函數(shù)的單調(diào)區(qū)間即可.

解答 解:(Ⅰ)設(shè)x<0,則-x>0,f(-x)=-4(-x)2+8(-x)-3=-4x2-8x-3,(2分)
∵f(x)是偶函數(shù),∴f(-x)=f(x),
∴x<0時,f(x)=-4x2-8x-3,
∴f(x)=$\left\{\begin{array}{l}{-4{x}^{2}+8x-3,x≥0}\\{-4{x}^{2}-8x-3,x<0}\end{array}\right.$;
(Ⅱ)如圖所示

由圖可知y=f(x)有最大值f(1)=f(-1)=1
函數(shù)y=f(x)的單調(diào)遞增區(qū)間是(-∞,-1]和[0,1]
單調(diào)遞減區(qū)間是[-1,0]和[1,+∞)

點評 本題主要考查了利用偶函數(shù)的對稱性求解函數(shù)的解析式,函數(shù)單調(diào)性的判斷與證明,函數(shù)的單調(diào)區(qū)間的求解,(Ⅱ)中對每段函數(shù)求解單調(diào)區(qū)間時要注意函數(shù)的定義域.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

12.已知tan(π-α)=-$\frac{2}{3}$,且α∈(-π,-$\frac{π}{2}}$),則$\frac{{cos({-α})+3sin({π+α})}}{{cos({π-α})+9sinα}}$的值為( 。
A.$-\frac{1}{5}$B.$-\frac{3}{7}$C.$\frac{1}{5}$D.$\frac{3}{7}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.設(shè){an}為等比數(shù)列,{bn}為等差數(shù)列,且b1=0,cn=an+bn,若數(shù)列{cn}是1,1,2,…,則{cn}的前10項和為(  )
A.979B.557C.467D.978

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.有下列命題:
①若xy=0,則|x|+|y|=0;
②若a>b,則a+c>b+c;
③矩形的對角線互相垂直,
其中真命題共有( 。
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.數(shù)列{an}的前n項和為Sn,Sn=2n+1-(n+1),等差數(shù)列{bn}的各項為正實數(shù),其前n項和為Tn,且T3=9,又a1+b1,a2+b2,a3+b3成等比數(shù)列.
(I)求數(shù)列{an}、{bn}的通項公式;
(2)若cn=anbn,當n≥2時,求數(shù)列{cn}的前n項和An

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.若2sinα+cosα=-$\sqrt{5}$,則tanα=( 。
A.$\frac{1}{2}$B.2C.-$\frac{1}{2}$D.-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)f(x+2)=x2-2x+3,求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知角α的頂點與原點O重合,始邊與x軸的非負半軸重合,P(m,-2m)(m≠0)是角α終邊上的一點.則tan(α+$\frac{π}{4}$)的值為( 。
A.3B.$\frac{1}{3}$C.$-\frac{1}{3}$D.-3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知橢圓$\frac{x^2}{4}+{y^2}=1$,A,B是橢圓的左,右頂點,P是橢圓上不與A,B重合的一點,PA、PB的傾斜角分別為α、β,則$\frac{cos(α-β)}{cos(α+β)}$=$\frac{5}{3}$.

查看答案和解析>>

同步練習冊答案