【題目】如圖,已知橢圓C:的左、右頂點分別為右焦點為,右準(zhǔn)線l的方程為,過焦點F的直線與橢圓C相交于點A,B(不與點重合).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)當(dāng)直線AB的傾斜角為45°時,求弦AB的長;
(3)設(shè)直線交l于點M,求證:B,,M三點共線.
【答案】(1)(2)(3)見解析
【解析】
(1)由題意結(jié)合橢圓性質(zhì)可得、,即可得解;
(2)由題意直線,設(shè),,聯(lián)立方程組可得,,再利用弦長公式即可得解;
(3)設(shè)直線,,,易得,轉(zhuǎn)化結(jié)論為證明成立,聯(lián)立方程組即可得,,進(jìn)而可得,即可得證.
(1)設(shè)橢圓C的焦距為2c.由題意得.
又右準(zhǔn)線l的方程為,所以,
所以,,
所以橢圓的標(biāo)準(zhǔn)方程為,
(2)設(shè),,
因為直線的傾斜角為且過點,
所以直線,
聯(lián)立,消去得,,
所以,,
所以;
(3)由題意可得,,
因為直線AB的斜率不為0,
所以設(shè)直線,,,
則直線,令,得,所以;
要證,,三點共線,只需證,
即證,即證;
聯(lián)立,消去x得,,
所以,,
所以,
所以,,三點共線.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓、拋物線的焦點均在軸上,的中心和的頂點均為原點,從每條曲線上取兩個點,將其坐標(biāo)記錄于下表中:
3 | 2 | 4 | ||
0 | 4 |
(Ⅰ)求的標(biāo)準(zhǔn)方程;
(Ⅱ)請問是否存在直線滿足條件:①過的焦點;②與交不同兩點且滿足?若存在,求出直線的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙三人投籃的命中率各不相同,其中乙的命中率是甲的2倍,丙的命中率等于甲與乙的命中率之和.若甲與乙各投籃一次,每人投籃相互獨立,則他們都命中的概率為0.18.
(1)求甲、乙、丙三人投籃的命中率;
(2)現(xiàn)要求甲、乙、丙三人各投籃一次,假設(shè)每人投籃相互獨立,記三人命中總次數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,的頂點,,且、、成等差數(shù)列.
(1)求的頂點的軌跡方程;
(2)直線與頂點的軌跡交于兩點,當(dāng)線段的中點落在直線上時,試問:線段的垂直平分線是否恒過定點?若過定點,求出定點的坐標(biāo);若不過定點,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】跨年迎新聯(lián)歡晚會簡稱跨年晚會,是指每年陽歷年末12月31日晚上各電視臺和政府為喜迎新而精心策劃的演唱會活動,跨年晚會首次出現(xiàn)在港臺地區(qū),跨年晚會因形式和舉辦地不同因而名稱也不同,如央視啟航2020跨年盛典,湖南衛(wèi)視跨年演唱會,東方衛(wèi)視迎新晚會等.某電視臺為了了解2020年舉辦的跨年迎新晚會觀眾的滿意度,現(xiàn)分別隨機選出名觀眾對迎新晚會的質(zhì)量評估評分,最高分為分,綜合得分情況如下表所示:
綜合得分 | |||||||
觀眾人數(shù) | 5 | 10 | 25 | 30 | 15 | 10 | 5 |
根據(jù)表中的數(shù)據(jù),回答下列問題:
(1)根據(jù)表中的數(shù)據(jù),繪制這位觀眾打分的頻率分布直方圖;
(2)已知觀眾的評分近似服從,其中是反應(yīng)隨機變量取值的平均水平的特征數(shù),工作人員在分析數(shù)據(jù)時發(fā)現(xiàn),可用位觀眾評分的平均數(shù)估計,但由于評分觀眾人數(shù)較少,誤差較大,所以不能直接用位觀眾評分的標(biāo)準(zhǔn)差的值估計,而在這位觀眾打分的頻率分布直方圖的基礎(chǔ)上依據(jù)來估計更科學(xué)合理,試求和的估計值(的結(jié)果精確到小數(shù)點后兩位).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代數(shù)學(xué)名著,它在幾何學(xué)中的研究比西方早1000多年,在《九章算術(shù)》中,將底面為直角三角形,且側(cè)棱垂直于底面的三棱柱稱為塹堵(qian du);陽馬指底面為矩形,一側(cè)棱垂直于底面的四棱錐,鱉膈(bie nao)指四個面均為直角三角形的四面體.如圖在塹堵中,,.給出下列四個結(jié)論:
①四棱錐為陽馬;
②直線與平面所成角為;
③當(dāng)時,異面直線與所成的角的余弦值為;
④當(dāng)三棱錐體積最大時,四棱錐的外接球的表面積為.
其中,所有正確結(jié)論的序號是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為了解校園安全教育系列活動的成效,對全校學(xué)生進(jìn)行了一次安全意識測試,根據(jù)測試成績評定“合格”“不合格”兩個等級,同時對相應(yīng)等級進(jìn)行量化:“合格”記5分,“不合格”記0分.現(xiàn)隨機抽取部分學(xué)生的答卷,統(tǒng)計結(jié)果及對應(yīng)的頻率分布直方圖如下:
等級 | 不合格 | 合格 | ||
得分 | ||||
頻數(shù) | 6 | a | 24 | b |
(1)由該題中頻率分布直方圖求測試成績的平均數(shù)和中位數(shù);
(2)其他條件不變在評定等級為“合格”的學(xué)生中依次抽取2人進(jìn)行座談,每次抽取1人,求在第1次抽取的測試得分低于80分的前提下,第2次抽取的測試得分仍低于80分的概率;
(3)用分層抽樣的方法,從評定等級為“合格”和“不合格”的學(xué)生中抽取10人進(jìn)行座談.現(xiàn)再從這10人中任選4人,記所選4人的量化總分為,求的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為,曲線C的極坐標(biāo)方程為.
(Ⅰ)求直線l和曲線C的直角坐標(biāo)方程;
(Ⅱ)點M為曲線C上一點,求M到直線l的最小距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com