(1)如圖,已知是坐標(biāo)平面內(nèi)的任意兩個(gè)角,且,證明兩角差的余弦公式:;
(2)已知,且,,求的值.
(1)利用角的定義及數(shù)量積的坐標(biāo)運(yùn)算處理,(2)
解析試題分析:(1)設(shè)、分別為終邊與單位圓的交點(diǎn),則,,
則, 3分
又∵的夾角為,
∴, 6分
∴ 7分
(2)∵∈(,π),∴ 8分
又∵∈(0,)∴+β∈(,)又∵
∴ 10分
∴ 12分
∴ 14分
考點(diǎn):本題考查了三角函數(shù)的概念及兩角和差公式的運(yùn)用
點(diǎn)評(píng):熟練運(yùn)用三角恒等變換化簡(jiǎn)三角函數(shù)、利用三角函數(shù)定義求值問題是解決此類問題的關(guān)鍵,考查邏輯推理和運(yùn)算求解能力,簡(jiǎn)單題
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)寫出函數(shù)的最小正周期和單調(diào)增區(qū)間;
(2)若函數(shù)的圖象關(guān)于直線對(duì)稱,且,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知向量=(sin,1),=(cos,cos2)
(1)若·=1,求cos(-x)的值;
(2)記f(x)=·,在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,且滿足(2a-c)cosB=bcosC,求函數(shù)f(A)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)f(x)= ×,其中向量="(2cosx,1)," =(cosx, sin2x+m).
(1)求函數(shù)f(x)的最小正周期和f(x)在[0, p]上的單調(diào)遞增區(qū)間;
(2)當(dāng)xÎ[0,]時(shí),ô f(x)ô <4恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
函數(shù)在一個(gè)周期內(nèi)的圖像如圖所示,A為圖像的最高點(diǎn),B.C為圖像與軸的交點(diǎn),且為正三角形.
(1)若,求函數(shù)的值域;
(2)若,且,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com