已知函數(shù)
(1)求證:;
(2)解不等式

(1)利用分段函數(shù)的三段論來(lái)得到結(jié)論。
(2)

解析試題分析:(1),
又當(dāng)時(shí),,∴
(2)當(dāng)時(shí),;
當(dāng)時(shí),; 
當(dāng)時(shí),
綜合上述,不等式的解集為:
考點(diǎn):二次不等式
點(diǎn)評(píng):主要是考查了絕對(duì)值不等式以及二次不等式的求解,屬于基礎(chǔ)題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知二次函數(shù).
(1)若對(duì)任意,且,都有,求證:關(guān)于的方程
有兩個(gè)不相等的實(shí)數(shù)根且必有一個(gè)根屬于;
(2)若關(guān)于的方程上的根為,且,設(shè)函數(shù)的圖象的對(duì)稱軸方程為,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
⑴ 求函數(shù)的單調(diào)區(qū)間;
⑵ 如果對(duì)于任意的,總成立,求實(shí)數(shù)的取值范圍;
⑶ 設(shè)函數(shù),. 過(guò)點(diǎn)作函數(shù)圖像的所有切線,令各切點(diǎn)的橫坐標(biāo)構(gòu)成數(shù)列,求數(shù)列的所有項(xiàng)之和的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(14分)已知函數(shù),其中a是實(shí)數(shù).設(shè)A(x1,f(x1)),B(x2,f(x2))為該函數(shù)圖象上的兩點(diǎn),且x1<x2
(Ⅰ)指出函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)的圖象在點(diǎn)A,B處的切線互相垂直,且x2<0,證明:x2﹣x1≥1;
(Ⅲ)若函數(shù)f(x)的圖象在點(diǎn)A,B處的切線重合,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

為了降低能源損耗,某城市對(duì)新建住宅的屋頂和外墻都要求建造隔熱層.某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬(wàn)元.該建筑物每年的能源消耗費(fèi)用C(單位:萬(wàn)元)與隔熱層厚度(單位:cm)滿足關(guān)系:,若不建隔熱層,每年能源消耗費(fèi)用為8萬(wàn)元.設(shè)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和.
(1)求的值及的表達(dá)式;
(2)隔熱層修建多厚時(shí),總費(fèi)用達(dá)到最小,并求最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)若存在,使得成立,求實(shí)數(shù)的取值范圍;
(2)解關(guān)于的不等式;
(3)若,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)是定義在的可導(dǎo)函數(shù),且不恒為0,記.若對(duì)定義域內(nèi)的每一個(gè),總有,則稱為“階負(fù)函數(shù) ”;若對(duì)定義域內(nèi)的每一個(gè),總有,則稱為“階不減函數(shù)”(為函數(shù)的導(dǎo)函數(shù)).
(1)若既是“1階負(fù)函數(shù)”,又是“1階不減函數(shù)”,求實(shí)數(shù)的取值范圍;
(2)對(duì)任給的“2階不減函數(shù)”,如果存在常數(shù),使得恒成立,試判斷是否為“2階負(fù)函數(shù)”?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)是奇函數(shù),并且函數(shù)的圖像經(jīng)過(guò)點(diǎn)(1,3).
(1)求實(shí)數(shù)的值;
(2)求函數(shù)的值域。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

定義在R上的函數(shù),當(dāng)時(shí),,且對(duì)任意實(shí)數(shù),
,
求證:;
(2)證明:是R上的增函數(shù);
(3)若,求的取值范圍。

查看答案和解析>>

同步練習(xí)冊(cè)答案