為了降低能源損耗,某城市對(duì)新建住宅的屋頂和外墻都要求建造隔熱層.某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元.該建筑物每年的能源消耗費(fèi)用C(單位:萬元)與隔熱層厚度(單位:cm)滿足關(guān)系:,若不建隔熱層,每年能源消耗費(fèi)用為8萬元.設(shè)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和.
(1)求的值及的表達(dá)式;
(2)隔熱層修建多厚時(shí),總費(fèi)用達(dá)到最小,并求最小值.

(1)k="40,"
(2)隔熱層修建厚時(shí),總費(fèi)用達(dá)到最小,最小值為70萬元

解析試題分析:解:(1)當(dāng)時(shí),,
,   .  4分
(2),
設(shè),. 8分
當(dāng)且僅當(dāng)這時(shí),因此 . 10分
所以,隔熱層修建厚時(shí),總費(fèi)用達(dá)到最小,最小值為70萬元. .12分
考點(diǎn):函數(shù)的運(yùn)用
點(diǎn)評(píng):主要是考查了函數(shù)模型的運(yùn)用,屬于中檔題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/81/1/pisur.png" style="vertical-align:middle;" />的函數(shù)滿足,當(dāng)時(shí),
(1)當(dāng)時(shí),求的解析式;
(2)當(dāng)x∈時(shí),恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某投資公司年初用萬元購置了一套生產(chǎn)設(shè)備并即刻生產(chǎn)產(chǎn)品,已知與生產(chǎn)產(chǎn)品相關(guān)的各種配套費(fèi)用第一年需要支出萬元,第二年需要支出萬元,第三年需要支出萬元,……,每年都比上一年增加支出萬元,而每年的生產(chǎn)收入都為萬元.假設(shè)這套生產(chǎn)設(shè)備投入使用年,,生產(chǎn)成本等于生產(chǎn)設(shè)備購置費(fèi)與這年生產(chǎn)產(chǎn)品相關(guān)的各種配套費(fèi)用的和,生產(chǎn)總利潤等于這年的生產(chǎn)收入與生產(chǎn)成本的差. 請(qǐng)你根據(jù)這些信息解決下列問題:
(Ⅰ)若,求的值;
(Ⅱ)若干年后,該投資公司對(duì)這套生產(chǎn)設(shè)備有兩個(gè)處理方案:
方案一:當(dāng)年平均生產(chǎn)利潤取得最大值時(shí),以萬元的價(jià)格出售該套設(shè)備;
方案二:當(dāng)生產(chǎn)總利潤取得最大值時(shí),以萬元的價(jià)格出售該套設(shè)備. 你認(rèn)為哪個(gè)方案更合算?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),其中為大于零的常數(shù),,函數(shù)的圖像與坐標(biāo)軸交點(diǎn)處的切線為,函數(shù)的圖像與直線交點(diǎn)處的切線為,且.
(I)若在閉區(qū)間上存在使不等式成立,求實(shí)數(shù)的取值范圍;
(II)對(duì)于函數(shù)公共定義域內(nèi)的任意實(shí)數(shù),我們把的值稱為兩函數(shù)在處的偏差.求證:函數(shù)在其公共定義域內(nèi)的所有偏差都大于2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)求函數(shù)的定義域,并判斷的奇偶性;
(2)用定義證明函數(shù)上是增函數(shù);
(3)如果當(dāng)時(shí),函數(shù)的值域是,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)求證:;
(2)解不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

“活水圍網(wǎng)”養(yǎng)魚技術(shù)具有養(yǎng)殖密度高、經(jīng)濟(jì)效益好的特點(diǎn).研究表明:“活水圍網(wǎng)”養(yǎng)魚時(shí),某種魚在一定的條件下,每尾魚的平均生長速度(單位:千克/年)是養(yǎng)殖密度(單位:尾/立方米)的函數(shù).當(dāng)不超過4(尾/立方米)時(shí),的值為(千克/年);當(dāng)時(shí),的一次函數(shù);當(dāng)達(dá)到(尾/立方米)時(shí),因缺氧等原因,的值為(千克/年).
(1)當(dāng)時(shí),求函數(shù)的表達(dá)式;
(2)當(dāng)養(yǎng)殖密度為多大時(shí),魚的年生長量(單位:千克/立方米)可以達(dá)到最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某工廠某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)千件,需另投入成本為,當(dāng)年產(chǎn)量不足80千件時(shí),(萬元).當(dāng)年產(chǎn)量不小于80千件時(shí),(萬元),每件商品售價(jià)為0.05萬元,通過市場(chǎng)分析,該廠生產(chǎn)的商品能全部售完.
(Ⅰ)寫出年利潤(萬元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;
(Ⅱ)年產(chǎn)量為多少千件時(shí),該廠在這一商品的生產(chǎn)中所獲利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題


運(yùn)貨卡車以每小時(shí)千米的速度勻速行駛130千米(單位:千米/小時(shí)).假設(shè)汽油的價(jià)格是每升2元,而汽車每小時(shí)耗油升,司機(jī)的工資是每小時(shí)14元.
(Ⅰ)求這次行車總費(fèi)用關(guān)于的表達(dá)式;
(Ⅱ)當(dāng)為何值時(shí),這次行車的總費(fèi)用最低,并求出最低費(fèi)用的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案