.對(duì)大于或等于2的自然數(shù)的次方冪有如下分解方式:
;; ;
;;.
根據(jù)上述分解規(guī)律,則
,
.
若的分解中最大的加數(shù)是419,
則的值為 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
設(shè)直角三角形的兩直角邊的長(zhǎng)分別為,斜邊長(zhǎng)為,斜邊上的高為,則有 成立,某同學(xué)通過(guò)類比得到如下四個(gè)結(jié)論:
①;②;③ ;④.
其中正確結(jié)論的序號(hào)是 ;進(jìn)一步得到的一般結(jié)論是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某少數(shù)民族的刺繡有著悠久的歷史,下圖(1)、(2)、(3)、(4)為她們刺繡最簡(jiǎn)單的四個(gè)圖案,這些圖案都由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮,現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第n個(gè)圖形包含個(gè)小正方形.
(Ⅰ)求出;
(Ⅱ)利用合情推理的“歸納推理思想”歸納出與的關(guān)系式,
(Ⅲ)根據(jù)你得到的關(guān)系式求的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
若是等比數(shù)列,是互不相等的正整數(shù),則有正確的結(jié)論:.類比上述性質(zhì),相應(yīng)地,若是等差數(shù)列,是互不相等的正整數(shù),則有正確的結(jié)論: . .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
邊長(zhǎng)為的等邊三角形內(nèi)任一點(diǎn)到三邊距離之和為定值,則這個(gè)定值為;
推廣到空間,棱長(zhǎng)為的正四面體內(nèi)任一點(diǎn)到各面距離之和為_(kāi)__________________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
在平面幾何里有射影定理:“設(shè)△ABC的兩邊,D是A點(diǎn)在BC邊上的射影,則.”。拓展到空間,若三棱錐A-BCD的三個(gè)側(cè)面ABC、ACD、ADB兩兩互相垂直,點(diǎn)O是頂點(diǎn)A在底面BCD上的射影且O點(diǎn)在△BCD內(nèi),類比平面上三角形的射影定理,△ABC、△BOC、△BCD三者的面積關(guān)系是
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
某少數(shù)民族的刺繡有著悠久的歷史,下圖(1)、(2)、(3)、(4)為她們刺繡最簡(jiǎn)單的四個(gè)圖案,這些圖案都是由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮;現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第個(gè)圖形包含個(gè)小正方形.則的表達(dá)式為___▲____。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
觀察下列等式:13+23 =32,13+23+33 = 62,13+23+33+43=102,…,根據(jù)上述規(guī)律,第五個(gè)等式為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
下面給出三個(gè)類比推理命題(其中為有理數(shù)集,為實(shí)數(shù)集,為復(fù)數(shù)集);
①類比推出
②類比推出
,若
③類比推出其中類比結(jié)論正確的序號(hào)是_____________(寫(xiě)出所有正確結(jié)論的序號(hào))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com