精英家教網 > 高中數學 > 題目詳情

【題目】將一顆骰子(各面分別標有1,2,3,4,5,6的均勻正方體)拋擲三次.那么,向上一面的三個點數可構成周長能被3整除的三角形的三邊長的概率_______.

【答案】

【解析】

設投擲這三顆骰子所得點數分別為、b、c (≤b≤c).

則條件等價于

若所構成的三角形是正三角形,則共有6種情形.

若所構成的三角形是等腰三角形(非等邊),則易證(mod 3).

從而(,b,c)=(1,4,4),(2,5,5),(3,6,6) 此時,共有9種情形.

若所構成的三角形是任意三角形(非等腰),則<b<c.從而,>≥1.進而,

4≤c≤6.故(,b,c)=(2,3,4),(3,4,5),(4,5,6)

此時,共有種情形.

因此,所求的概率等于

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】2021年開始,我省將試行“3+1+2“的普通高考新模式,即除語文、數學、外語3門必選科目外,考生再從物理、歷史中選1門,從化學、生物、地理、政治中選2門作為選考科目.為了幫助學生合理選科,某中學將高一每個學生的六門科目綜合成績按比例均縮放成5分制,繪制成雷達圖.甲同學的成績雷達圖如圖所示,下面敘述一定不正確的是( 。

A.甲的物理成績領先年級平均分最多

B.甲有2個科目的成績低于年級平均分

C.甲的成績從高到低的前3個科目依次是地理、化學、歷史

D.對甲而言,物理、化學、地理是比較理想的一種選科結果

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖1,矩形中,,邊上異于端點的動點,,將矩形沿折疊至處,使面(如圖2).點滿足,.

(1)證明:

(2)設,當為何值時,四面體的體積最大,并求出最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】甲、乙兩隊進行籃球決賽,采取五場三勝制(當一隊贏得三場勝利時,該隊獲勝,比賽結束).根據前期比賽成績,甲隊的主客場安排依次為“主主客客主”.設甲隊主場取勝的概率為,客場取勝的概率為,且各場比賽結果相互獨立,則甲隊不超過場即獲勝的概率是(

A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】水稻是人類重要的糧食作物之一,耕種與食用的歷史都相當悠久,日前我國南方農戶在播種水稻時一般有直播、撒酒兩種方式.為比較在兩種不同的播種方式下水稻產量的區(qū)別,某市紅旗農場于2019年選取了200塊農田,分成兩組,每組100塊,進行試驗.其中第一組采用直播的方式進行播種,第二組采用撒播的方式進行播種.得到數據如下表:

產量(單位:斤)

播種方式

[840860

[860,880

[880,900

[900,920

[920,940

直播

4

8

18

39

31

散播

9

19

22

32

18

約定畝產超過900斤(含900斤)為產量高,否則為產量低

1)請根據以上統計數據估計100塊直播農田的平均產量(同一組中的數據用該組區(qū)間的中點值為代表)

2)請根據以上統計數據填寫下面的2×2列聯表,并判斷是否有99%的把握認為產量高播種方式有關?

產量高

產量低

合計

直播

散播

合計

PK2k0

0.10

0.010

0.001

k0

2.706

6.635

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】n×n的棋盤的部分結點(單位正方形的頂點)染紅,使得任意一個由單位正方形構成的k×k的子棋盤的邊界上至少有一個紅點.記滿足條件的紅點數的最小值為. 試求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某公交公司為了方便市民出行、科學規(guī)劃車輛投放,在一個人員密集流動地段增設一個起點站,為研究車輛發(fā)車間隔時間(分鐘)與乘客等候人數(人)之間的關系,經過調查得到如下數據:

間隔時間(分鐘)

等候人數(人)

調查小組先從這組數據中選取組數據求線性回歸方程,再用剩下的組數據進行檢驗.檢驗方法如下:先用求得的線性回歸方程計算間隔時間對應的等候人數,再求與實際等候人數的差,若差值的絕對值不超過,則稱所求線性回歸方程是“恰當回歸方程”.

(1)從這組數據中隨機選取組數據后,求剩下的組數據的間隔時間之差大于的概率;

(2)若選取的是后面組數據,求關于的線性回歸方程,并判斷此方程是否是“恰當回歸方程”;

(3)在(2)的條件下,為了使等候的乘客不超過人,則間隔時間最多可以設置為多少分鐘?(精確到整數)

參考公式:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】日,某地援鄂醫(yī)護人員,,,,人(其中是隊長)圓滿完成抗擊新冠肺炎疫情任務返回本地,他們受到當地群眾與領導的熱烈歡迎.當地媒體為了宣傳他們的優(yōu)秀事跡,讓這名醫(yī)護人員和接見他們的一位領導共人站一排進行拍照,則領導和隊長站在兩端且相鄰,而不相鄰的排法種數為(

A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線Cy2=2px過點P(1,1).過點(0, )作直線l與拋物線C交于不同的兩點M,N,過點Mx軸的垂線分別與直線OP,ON交于點AB,其中O為原點.

(Ⅰ)求拋物線C的方程,并求其焦點坐標和準線方程;

(Ⅱ)求證:A為線段BM的中點.

查看答案和解析>>

同步練習冊答案