【題目】如圖1,矩形中,,邊上異于端點(diǎn)的動(dòng)點(diǎn),,將矩形沿折疊至處,使面(如圖2).點(diǎn)滿足,.

(1)證明:

(2)設(shè),當(dāng)為何值時(shí),四面體的體積最大,并求出最大值.

【答案】(1)見證明;(2)當(dāng)時(shí),取得最大值.

【解析】

(1)在面內(nèi),過點(diǎn)F作FG于點(diǎn)G,連接GE.根據(jù)線線平行得

,從而得到面,可證得結(jié)論;

(2),則BM=2-x,ME=GM=,可證面MEC,得,由二次函數(shù)求得最值即可.

(1)在面內(nèi),過點(diǎn)F作FG于點(diǎn)G,連接GE.

,,又,F(xiàn)G

.

,同理可證得.

,,

∴面,

,

(2),則BM=2-x,ME=GM=

面MBCN,面面MBCN=NM,

,

面MBCN,即面MEC,

又GF面MEC,

當(dāng)時(shí),取得最大值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】試問:能否把2008表示成的形式?如果可以,這種表示方式是否有無限多個(gè)?其中,m、n均為大于100且小于170的正整數(shù),;均為兩兩不相等的小于6的正有理數(shù),均為大于1且小于5的正整數(shù),同時(shí), 兩兩不相等,也兩兩不相等請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若的圖像過點(diǎn),且在點(diǎn)處的切線方程為,試求函數(shù)的單調(diào)區(qū)間;

(2)當(dāng)時(shí),若函數(shù)恒成立,求整數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是的導(dǎo)函數(shù)的圖象,對(duì)于下列四個(gè)判斷,其中正確的判斷是( .

A.上是增函數(shù);

B.當(dāng)時(shí),取得極小值;

C.上是增函數(shù)、在上是減函數(shù);

D.當(dāng)時(shí),取得極大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是一個(gè)各位數(shù)字都不是0且沒有重復(fù)數(shù)字的三位數(shù),將組成的3個(gè)數(shù)字按從小到大排成的三位數(shù)記為,按從大到小排成的三位數(shù)記為,(例如,則)閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,任意輸入一個(gè),輸出的結(jié)果=( )

A. 693 B. 594 C. 495 D. 792

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)的極值;

(2)若不等式對(duì)恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,是以直徑的圓上的動(dòng)點(diǎn),已知,則的最大值是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將一顆骰子(各面分別標(biāo)有1,2,3,4,5,6的均勻正方體)拋擲三次.那么,向上一面的三個(gè)點(diǎn)數(shù)可構(gòu)成周長能被3整除的三角形的三邊長的概率_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中,為棱的中點(diǎn),.

(1)證明:平面;

(2)設(shè)二面角的正切值為,,,求異面直線所成角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案