,
由于x1>0,由遞推式可知xn>0,所以xn+1-xn與1-同號(hào)。 (1)若0<x1<1, ①當(dāng)n=1時(shí),1->0成立, ②設(shè)n=k時(shí),1->0,則當(dāng)n=k+1時(shí), 即n=k+1時(shí),1->0,由①、②知,對(duì)于一切自然數(shù),都有1->0, 從而對(duì)一切自然數(shù)n,都有xn+1>xn。 (2)若x1>1,同理可證對(duì)一切自然數(shù)n都有xn+1<xn。 由(1)、(2)可知,或者對(duì)任意自然數(shù)n,都有xn<xn+1或者對(duì)任意自然數(shù)n都有xn>xn+1。
|
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
3 |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
n+1 | n |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com