【題目】已知直線l:x+ay-1=0(a∈R)是圓C:x2+y2-4x-2y+1=0的對稱軸.過點A(-4,a)作圓C的一條切線,切點為B,則|AB|=________.
科目:高中數(shù)學 來源: 題型:
【題目】某購物商場分別推出支付寶和微信“掃碼支付”購物活動,活動設置了一段時間的推廣期,由于推廣期內優(yōu)惠力度較大,吸引越來越多的人開始使用“掃碼支付”.現(xiàn)統(tǒng)計了活動剛推出一周內每天使用掃碼支付的人次,用表示活動推出的天數(shù),表示每天使用掃碼支付的人次,統(tǒng)計數(shù)據如下表所示:
(1)根據散點圖判斷,在推廣期內,掃碼支付的人次關于活動推出天數(shù)的回歸方程適合用來表示,求出該回歸方程,并預測活動推出第天使用掃碼支付的人次;
(2)推廣期結束后,商場對顧客的支付方式進行統(tǒng)計,結果如下表:
支付方式 | 現(xiàn)金 | 會員卡 | 掃碼 |
比例 |
商場規(guī)定:使用現(xiàn)金支付的顧客無優(yōu)惠,使用會員卡支付的顧客享受折優(yōu)惠,掃碼支付的顧客隨機優(yōu)惠,根據統(tǒng)計結果得知,使用掃碼支付的顧客,享受折優(yōu)惠的概率為,享受折優(yōu)惠的概率為,享受折優(yōu)惠的概率為.現(xiàn)有一名顧客購買了元的商品,根據所給數(shù)據用事件發(fā)生的頻率來估計相應事件發(fā)生的概率,估計該顧客支付的平均費用是多少?
參考數(shù)據:設,,,
參考公式:對于一組數(shù)據,,…,,其回歸直線的斜率和截距的最小二乘估計公式分別為:,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓,圓,動圓P與圓M外切并且與圓N內切,圓心P的軌跡為曲線C.
(1)求曲線C的方程;
(2)設不經過點的直線l與曲線C相交于A,B兩點,直線QA與直線QB的斜率均存在且斜率之和為-2,證明:直線l過定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以下四個命題:
①“若,則”的逆否命題為真命題
②“”是“函數(shù)在區(qū)間上為增函數(shù)”的充分不必要條件
③若為假命題,則,均為假命題
④對于命題:,,則為:,
其中真命題的個數(shù)是( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知的兩個頂點的坐標分別為,,且所在直線的斜率之積等于,記頂點的軌跡為.
(Ⅰ)求頂點的軌跡的方程;
(Ⅱ)若直線與曲線交于兩點,點在曲線上,且為的重心(為坐標原點),求證:的面積為定值,并求出該定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校為了了解高一年級學生學習數(shù)學的狀態(tài),從期中考試成績中隨機抽取50名學生的數(shù)學成績,按成績分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.
(1)由頻率分布直方圖,估計這50名學生數(shù)學成績的中位數(shù)和平均數(shù)(保留到0.01);
(2)該校高一年級共有1000名學生,若本次考試成績90分以上(含90分)為“優(yōu)秀”等次,則根據頻率分布直方圖估計該校高一學生數(shù)學成績達到“優(yōu)秀”等次的人數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】3個紅球與3個黑球隨機排成一行,從左到右依次在球上標記1,2,3,4,5,6,則紅球上的數(shù)字之和小于黑球上的數(shù)字之和的概率為( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(為自然對數(shù)的底數(shù))
(1)若曲線在點處的切線平行于軸,求的值;
(2)求函數(shù)的極值;
(3)當時,若直線與曲線沒有公共點,求的最大值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com