【題目】已知直線l:x+ay-1=0(a∈R)是圓C:x2+y2-4x-2y+1=0的對稱軸.過點A(-4,a)作圓C的一條切線,切點為B,則|AB|=________.

【答案】6

【解析】

求出圓的標準方程可得圓心和半徑,由直線lx+ay10經過圓C的圓心(2,1),求得a的值,可得點A的坐標,再利用直線和圓相切的性質求得|AB|的值.

∵圓Cx2+y24x2y+10,即(x22+y12 4,

表示以C21)為圓心、半徑等于2的圓.

由題意可得,直線lx+ay10經過圓C的圓心(21),

故有2+a10,∴a=﹣1,點A(﹣4,﹣1).

AC2,CBR2

∴切線的長|AB|6

故答案為6

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)當時,求的最大值;

2)若只有一個極值點.

i)求實數(shù)的取值范圍;

ii)證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某購物商場分別推出支付寶和微信掃碼支付購物活動,活動設置了一段時間的推廣期,由于推廣期內優(yōu)惠力度較大,吸引越來越多的人開始使用掃碼支付.現(xiàn)統(tǒng)計了活動剛推出一周內每天使用掃碼支付的人次,用表示活動推出的天數(shù),表示每天使用掃碼支付的人次,統(tǒng)計數(shù)據如下表所示:

1)根據散點圖判斷,在推廣期內,掃碼支付的人次關于活動推出天數(shù)的回歸方程適合用來表示,求出該回歸方程,并預測活動推出第天使用掃碼支付的人次;

2)推廣期結束后,商場對顧客的支付方式進行統(tǒng)計,結果如下表:

支付方式

現(xiàn)金

會員卡

掃碼

比例

商場規(guī)定:使用現(xiàn)金支付的顧客無優(yōu)惠,使用會員卡支付的顧客享受折優(yōu)惠,掃碼支付的顧客隨機優(yōu)惠,根據統(tǒng)計結果得知,使用掃碼支付的顧客,享受折優(yōu)惠的概率為,享受折優(yōu)惠的概率為,享受折優(yōu)惠的概率為.現(xiàn)有一名顧客購買了元的商品,根據所給數(shù)據用事件發(fā)生的頻率來估計相應事件發(fā)生的概率,估計該顧客支付的平均費用是多少?

參考數(shù)據:設,,

參考公式:對于一組數(shù)據,,,,其回歸直線的斜率和截距的最小二乘估計公式分別為:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓,圓,動圓P與圓M外切并且與圓N內切,圓心P的軌跡為曲線C.

1)求曲線C的方程;

2)設不經過點的直線l與曲線C相交于A,B兩點,直線QA與直線QB的斜率均存在且斜率之和為-2,證明:直線l過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以下四個命題:

,則的逆否命題為真命題

函數(shù)在區(qū)間上為增函數(shù)的充分不必要條件

③若為假命題,則均為假命題

④對于命題,,則為:,

其中真命題的個數(shù)是(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知的兩個頂點的坐標分別為,,且所在直線的斜率之積等于,記頂點的軌跡為.

Ⅰ)求頂點的軌跡的方程;

Ⅱ)若直線與曲線交于兩點,點在曲線上,且的重心(為坐標原點),求證:的面積為定值,并求出該定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校為了了解高一年級學生學習數(shù)學的狀態(tài),從期中考試成績中隨機抽取50名學生的數(shù)學成績,按成績分組:第1,第2,第3,第4,第5,得到的頻率分布直方圖如圖所示.

(1)由頻率分布直方圖,估計這50名學生數(shù)學成績的中位數(shù)和平均數(shù)(保留到0.01);

(2)該校高一年級共有1000名學生,若本次考試成績90分以上(含90分)為優(yōu)秀等次,則根據頻率分布直方圖估計該校高一學生數(shù)學成績達到優(yōu)秀等次的人數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】3個紅球與3個黑球隨機排成一行,從左到右依次在球上標記12,3,45,6,則紅球上的數(shù)字之和小于黑球上的數(shù)字之和的概率為(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為自然對數(shù)的底數(shù))

1)若曲線在點處的切線平行于軸,求的值;

2)求函數(shù)的極值;

3)當時,若直線與曲線沒有公共點,求的最大值.

查看答案和解析>>

同步練習冊答案