(滿分16分)
記函數(shù)f(x)的定義域?yàn)镈,若存在,使成立,則稱以為坐標(biāo)的點(diǎn)為函數(shù)圖象上的不動(dòng)點(diǎn)。
(1)若函數(shù)的圖象上有兩個(gè)關(guān)于原點(diǎn)對(duì)稱的不動(dòng)點(diǎn),求應(yīng)滿足的條件;
(2)下述結(jié)論“若定義在R上的奇函數(shù)f(x)的圖象上存在有限個(gè)不動(dòng)點(diǎn),則不動(dòng)點(diǎn)有奇數(shù)個(gè)”是否正確?若正確,請(qǐng)給予證明,并舉出一例;若不正確,請(qǐng)舉出一反例說(shuō)明
(1)
(2)證明略
解析解:(1)由, …………………………………………2分
整理得 ……………………………………4分
由題意知方程(*)有兩個(gè)互為相反數(shù)的根,所以即………6分
,,……………………………………………………8分
故應(yīng)滿足且……………………………………………………10分
(2)結(jié)論正確!12分
證明:為奇函數(shù),,取,得,
即(0,0)為函數(shù)的一個(gè)不動(dòng)點(diǎn),設(shè)函數(shù)除0以外還有不動(dòng)點(diǎn),
則
又,故也為函數(shù)的不動(dòng)點(diǎn)!14分
綜上,若定義在R上的奇函數(shù)圖象上存在有限個(gè)不動(dòng)點(diǎn),則不動(dòng)點(diǎn)有奇數(shù)個(gè)。
例如:。…………………………………………………16分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分15分)
已知:函數(shù)(a、b、c是常數(shù))是奇函數(shù),且滿足.
(1)求a、b、c的值;
(2)試判斷函數(shù)f(x)在區(qū)間(0,)上的單調(diào)性并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分14分)
醫(yī)學(xué)上為研究某種傳染病傳播過(guò)程中病毒細(xì)胞的發(fā)展規(guī)律及其預(yù)防,將病毒細(xì)胞注入一只小白鼠體內(nèi)進(jìn)行實(shí)驗(yàn),經(jīng)檢測(cè),病毒細(xì)胞在體內(nèi)的總數(shù)與天數(shù)的關(guān)系記錄如下表.已知該種病毒細(xì)胞在小白鼠體內(nèi)的個(gè)數(shù)超過(guò)的時(shí)候小白鼠將死亡.但注射某種藥物,將可殺死此時(shí)其體內(nèi)該病毒細(xì)胞的.
(Ⅰ) 為了使小白鼠在實(shí)驗(yàn)過(guò)程中不死亡,第一次最遲應(yīng)在何時(shí)注射該種藥物?(精確到天)
(Ⅱ)第二次最遲應(yīng)在何時(shí)注射該種藥物,才能維持小白鼠的生命?(精確到天)
(參考數(shù)據(jù):,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)
(1)求函數(shù)的最大值和最小正周期;
(2)設(shè)A,B,C為三個(gè)內(nèi)角,若,,且C為銳角,求
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
已知函數(shù)f(x)=(x∈R),P1(x1,y1),P2(x2,y2)是函數(shù)y=f(x)圖像上兩點(diǎn),且線段P1P2中點(diǎn)P的橫坐標(biāo)為。
(1)求證P的縱坐標(biāo)為定值; (4分)
(2)若數(shù)列{}的通項(xiàng)公式為=f()(m∈N,n=1,2,3,…,m),求數(shù)列{}的前m項(xiàng)和; (5分)
(3)若m∈N時(shí),不等式<橫成立,求實(shí)數(shù)a的取值范圍。(3分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分14分)已知函數(shù)
(1)判斷的奇偶性并證明;
(2)若的定義域?yàn)閇](),判斷在定義域上的增減性,并加以證明;
(3)若,使的值域?yàn)閇]的定義域區(qū)間[]()是否存在?若存在,求出[],若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(12分)
討論a,b的取值對(duì)一次函數(shù)y=ax+b單調(diào)性和奇偶性的影響,并畫出草圖。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本大題滿分12分)
某公司預(yù)計(jì)全年分批購(gòu)入每臺(tái)價(jià)值為2000元的電視機(jī)共3600臺(tái),每批都購(gòu)入x臺(tái),且每批均需付運(yùn)費(fèi)400元,儲(chǔ)存購(gòu)入的電視機(jī)全年所付保管費(fèi)與每批購(gòu)入電視機(jī)的總價(jià)值(不含運(yùn)費(fèi))成正比。若每批購(gòu)入400臺(tái),則全年需用去運(yùn)費(fèi)和保管費(fèi)43600元,F(xiàn)在全年只有24000元資金用于支付運(yùn)費(fèi)和保管費(fèi),請(qǐng)問(wèn)能否恰當(dāng)安排每批進(jìn)貨的數(shù)量,使資金夠用?寫出你的結(jié)論并說(shuō)明理由
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com