【題目】設離散型隨機變量X的分布列為
X | 1 | 2 | 3 |
P | P1 | P2 | P3 |
則EX=2的充要條件是( )
A.P1=P2
B.P2=P3
C.P1=P3
D.P1=P2=P3
【答案】C
【解析】解:由離散型隨機變量X的分布列知: 當EX=2時, ,解得P1=P3 ,
當P1=P3時,P1+P2+P3=2P1+P2=1.
EX=P1+2P2+3P3=4P1+2P2=2.
∴EX=2的充要條件是P1=P3 .
故選:C.
【考點精析】掌握離散型隨機變量及其分布列是解答本題的根本,需要知道在射擊、產品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列.
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,已知圓C的圓心坐標為(2,0),半徑為 ,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系.,直線l的參數方程為: (t為參數).
(1)求圓C和直線l的極坐標方程;
(2)點P的極坐標為(1, ),直線l與圓C相交于A,B,求|PA|+|PB|的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】持續(xù)性的霧霾天氣嚴重威脅著人們的身體健康,汽車排放的尾氣是造成霧霾天氣的重要因素之一.為了貫徹落實國務院關于培育戰(zhàn)略性新興產業(yè)和加強節(jié)能減排工作的部署和要求,中央財政安排專項資金支持開展私人購買新能源汽車補貼試點.2017年國家又出臺了調整新能源汽車推廣應用財政補貼的新政策,其中新能源乘用車推廣應用補貼標準如表: 某課題組從汽車市場上隨機選取了20輛純電動乘用車,根據其續(xù)駛里程R(單詞充電后能行駛的最大里程,R∈[100,300])進行如下分組:第1組[100,150),第2組[150,200),第3組[200,250),第4組[250,300],制成如圖所示的頻率分布直方圖.已知第1組與第3組的頻率之比為1:4,第2組的頻數為7.
純電動續(xù)駛里程R(公里) | 100≤R<150 | 150≤R<250 | R>250 |
補貼標準(萬元/輛) | 2 | 3.6 | 44 |
(1)請根據頻率分布直方圖統(tǒng)計這20輛純電動乘用車的平均續(xù)駛里程;
(2)若以頻率作為概率,設ξ為購買一輛純電動乘用車獲得的補貼,求ξ的分布列和數學期望E(ξ).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義在R上的奇函數f(x)滿足:f(x+1)=f(x﹣1),且當﹣1<x<0時,f(x)=2x﹣1,則f(log220)等于( )
A.
B.﹣
C.﹣
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在如圖所示的五面體中,面ABCD為直角梯形,∠BAD=∠ADC= ,平面ADE⊥平面ABCD,EF=2DC=4AB=4,△ADE是邊長為2的正三角形.
(Ⅰ)證明:BE⊥平面ACF;
(Ⅱ)求二面角A﹣BC﹣F的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】F是拋物線C:y2=4x的焦點,過F作兩條斜率都存在且互相垂直的直線l1 , l2 , l1交拋物線C于點A,B,l2交拋物線C于點G,H,則 的最小值是( )
A.8
B.8
C.16
D.16
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,正方形ACDE所在的平面與平面ABC垂直,M是CE和AD的交點,AC⊥BC,且AC=BC.
(Ⅰ)求證:AM⊥平面EBC;
(Ⅱ)求二面角A﹣EB﹣C的大。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在研究函數 f ( x )= ﹣ 的性質時,某同學受兩點間距離公式啟發(fā),將f(x)變形為f(x)= ﹣ ,并給出關于函數f(x)以下五個描述:
①函數 f(x)的圖象是中心對稱圖形;
②函數 f(x)的圖象是軸對稱圖形;
③函數 f(x)在[0,6]上是增函數;
④函數 f(x)沒有最大值也沒有最小值;
⑤無論m為何實數,關于x的方程 f(x)﹣m=0都有實數根.
其中描述正確的是 .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com