函數(shù)f(x)=ax2+2(a-1)x+2在區(qū)間(-∞,4)上為減函數(shù),則a的取值范圍為(   )
A.0<aB.0≤aC.0<aD.a>
B

試題分析:根據(jù)a取值討論是否為二次函數(shù),然后根據(jù)二次函數(shù)的性質(zhì)建立不等關(guān)系,最后將符合條件的求并集解:當(dāng)a=0時(shí),f(x)=-2x+2,符合題意,當(dāng)a≠0時(shí),要使函數(shù)f(x)=ax2+2(a-1)x+2在區(qū)間(-∞,4]上為減函數(shù),∴a>0, ⇒0<a≤綜上所述0≤a≤ 故選B
點(diǎn)評(píng):本題主要考查了已知函數(shù)再某區(qū)間上的單調(diào)性求參數(shù)a的范圍的問題,以及分類討論的數(shù)學(xué)思想,屬于基礎(chǔ)題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,表示神風(fēng)摩托車廠一天的銷售收入與摩托車銷售量的關(guān)系;表示摩托車廠一天的銷售成本與銷售量的關(guān)系.

(1)寫出銷售收入與銷售量之間的函數(shù)關(guān)系式;
(2)寫出銷售成本與銷售量之間的函數(shù)關(guān)系式;
(3)當(dāng)一天的銷售量為多少輛時(shí),銷售收入等于銷售成本;
(4)當(dāng)一天的銷售超過多少輛時(shí),工廠才能獲利?(利潤(rùn)=收入-成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

制作一個(gè)面積為,形狀為直角三角形的鐵架框,有下列四種長(zhǎng)度的鐵管供選擇,較經(jīng)濟(jì)(夠用,又耗材最少)的是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某產(chǎn)品在一個(gè)生產(chǎn)周期內(nèi)的總產(chǎn)量為100t,平均分成若干批生產(chǎn)。設(shè)每批生產(chǎn)需要投入固定費(fèi)用75元,而每批生產(chǎn)直接消耗的費(fèi)用與產(chǎn)品數(shù)量x的平方成正比,已知每批生產(chǎn)10t時(shí),直接消耗的費(fèi)用為300元(不包括固定的費(fèi)用)。
(1)若每批產(chǎn)品數(shù)量為20t,求此產(chǎn)品在一個(gè)生產(chǎn)周期的總費(fèi)用(固定費(fèi)用和直接消耗的費(fèi)用)。
(2)設(shè)每批產(chǎn)品數(shù)量為xt,一個(gè)生產(chǎn)周期內(nèi)的總費(fèi)用y元,求y與x的函數(shù)關(guān)系式,并求
出y的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

周長(zhǎng)為20cm的矩形,繞一條邊旋轉(zhuǎn)成一個(gè)圓柱,則圓柱體積的最大值為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知f(x)的定義域?yàn)?0,+∞),且滿足f(2)=1,f(xy)=f(x)+f(y),又當(dāng)x2>x1>0時(shí),f(x2)>f(x1).
(1)求f(1)、f(4)、f(8)的值;
(2)若有f(x)+f(x-2)≤3成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知定義在上的函數(shù)滿足下列三個(gè)條件:①對(duì)于任意的都有;②對(duì)于任意的;③函數(shù)的圖象關(guān)于y軸對(duì)稱,則下列結(jié)論正確的是 (   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知為一次函數(shù),且,則=                           

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若方程僅有一解,則實(shí)數(shù)的取值范圍是        

查看答案和解析>>

同步練習(xí)冊(cè)答案