【題目】已知函數(shù).
(1)當(dāng)時(shí),證明函數(shù)在是單調(diào)函數(shù);
(2)當(dāng)時(shí),函數(shù)在區(qū)間上的最小值是,求的值;
(3)設(shè),是函數(shù)圖象上任意不同的兩點(diǎn),記線段的中點(diǎn)的橫坐標(biāo)是,證明直線的斜率 .
【答案】(1)證明見解析;(2) ;(3)證明見解析.
【解析】試題分析:
(1)首先求解導(dǎo)函數(shù),由可得函數(shù)在是單增函數(shù);
(2)利用函數(shù)的單調(diào)性結(jié)合題意得到關(guān)于實(shí)數(shù)a的方程,解方程可得.
(3)首先求得斜率的表達(dá)式,然后結(jié)合表達(dá)式設(shè) ,構(gòu)造新函數(shù),結(jié)合函數(shù)的特征即可證得結(jié)論.
試題解析:
(1)解:.
因?yàn)?/span>,,所以.∴函數(shù)在是單增函數(shù);
(2)解:在上,分如下情況討論:
1.當(dāng)時(shí),,函數(shù)單調(diào)遞增,其最小值為,這與函數(shù)在上的最小值是相矛盾;
2.當(dāng)時(shí),函數(shù)在單調(diào)遞增,其最小值為,同樣與最小值是相矛盾;
3.當(dāng)時(shí),函數(shù)在上有,單調(diào)遞減,在上有,單調(diào)遞增,
∴函數(shù)的最小值為,得.
(3)證明:當(dāng)時(shí),,.
又,不妨設(shè),
要比較與的大小,即比較與的大小,又因?yàn)?/span>,
所以即比較與的大。
令,則∴在上是增函數(shù).
又,∴,,即.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某品牌手機(jī)銷售商今年1,2,3月份的銷售量分別是1萬部,1.2萬部,1.3萬部,為估計(jì)以后每個(gè)月的銷售量,以這三個(gè)月的銷售為依據(jù),用一個(gè)函數(shù)模擬該品牌手機(jī)的銷售量y(單位:萬部)與月份x之間的關(guān)系,現(xiàn)從二次函數(shù) 或函數(shù) 中選用一個(gè)效果好的函數(shù)行模擬,如果4月份的銷售量為1.37萬件,則5月份的銷售量為__________萬件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若曲線在處的切線方程為,求的極值;
(2)若,是否存在,使的極值大于零?若存在,求出的取值范圍;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義在上的奇函數(shù),且當(dāng)時(shí), ;
(1)求函數(shù)在上的解析式并畫出函數(shù)的圖象(不要求列表描點(diǎn),只要求畫出草圖)
(2)(。⿲懗龊瘮(shù)的單調(diào)遞增區(qū)間;
(ⅱ)若方程在上有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出如下三個(gè)等式:①;②;③.則下列函數(shù)中,不滿足其中任何一個(gè)等式的函數(shù)是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:與軸的正半軸相交于點(diǎn),點(diǎn)為橢圓的焦點(diǎn),且是邊長為2的等邊三角形,若直線與橢圓交于不同的兩點(diǎn).
(1)直線的斜率之積是否為定值?若是,請(qǐng)求出該定值;若不是,請(qǐng)說明理由;
(2)求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有4個(gè)不同的球,4個(gè)不同的盒子,把球全部放入盒子內(nèi).
(1)共有幾種放法?
(2)恰有1個(gè)空盒,有幾種放法?
(3)恰有2個(gè)盒子不放球,有幾種放法?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是上的偶函數(shù).
(1)求實(shí)數(shù)的值;
(2)判斷并證明函數(shù)在上單調(diào)性;
(3)求函數(shù)在上的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】張師傅想要一個(gè)如圖1所示的鋼筋支架的組合體,來到一家鋼制品加工店定制,拿出自己畫的組合體三視圖(如圖2所示).店老板看了三視圖,報(bào)了最低價(jià),張師傅覺得很便宜,當(dāng)即甩下定金和三視圖,約定第二天提貨.第二天提貨時(shí),店老板一臉壞笑的捧出如圖3–1所示的組合體,張師傅一看,臉都綠了:“奸商,怎能如此偷工減料”.店老板說,我是按你的三視圖做的,要不我給你加一個(gè)正方體,但要加價(jià),隨機(jī)加上了一個(gè)正方體,得到如圖3–2所示的組合體;張師傅臉還是綠的,店老板又加上一個(gè)正方體,組成了如圖 3–3 所示的組合體,又加價(jià);張師傅臉繼續(xù)綠,店老板再加一個(gè)正方體,組成如圖 3–4 所示的組合體,再次加價(jià);雙方就三視圖爭吵不休……
你認(rèn)為店老板提供的個(gè)組合體的三視圖與張師傅畫的三視圖一致的個(gè)數(shù)是( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com