【題目】已知圓C的極坐標(biāo)方程為,直線的參數(shù)方程為.若直線與圓C相交于不同的兩點P,Q.

(Ⅰ)寫出圓C的直角坐標(biāo)方程,并求圓心的坐標(biāo)與半徑;

(Ⅱ)若弦長|PQ|=4,求直線的斜率.

【答案】(1)(x﹣2)2+(y+3)2=13,圓心為(2,﹣3),半徑為 (2)0或

【解析】試題分析:(Ⅰ)兩邊同乘以利用可寫出圓的直角坐標(biāo)方程,并求出圓心的坐標(biāo)與半徑;(Ⅱ)將直線參數(shù)方程和的直線過定點根據(jù)點斜式可得直線方程為 ,代入圓的直角坐標(biāo)方程,根據(jù)弦長以及點到直線的距離公式可得以,從而可求直線的斜率.

試題解析:

解:(Ⅰ)由,得圓C直角坐標(biāo)方程x2+y2﹣4x+6y=0,配方,得(x﹣2)2+(y+3)2=13,所以圓心為(2,﹣3),半徑為

(Ⅱ)由直線的參數(shù)方程知直線過定點M(4,0),則由題意,知直線l的斜率一定存在,

設(shè)直線的方程為y=k(x﹣4),因為弦長|PQ|=4,所以=3,

解得k=0或k=﹣

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x) 為奇函數(shù).

(1)b的值;

(2)證明:函數(shù)f(x)在區(qū)間(1,+∞)上是減函數(shù);

(3)解關(guān)于x的不等式f(1x2)f(x22x4)0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),是自然對數(shù)的底數(shù)).

1)若上的單調(diào)遞增函數(shù),求實數(shù)的取值范圍;

(2)當(dāng)時,證明:函數(shù)有最小值,并求函數(shù)最小值的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系下,已知曲線C1:ρ=cosθ+sinθ和曲線C2:ρsin(θ-)=.

(1)求曲線C1和曲線C2的直角坐標(biāo)方程;

(2)當(dāng)θ∈(0,π)時,求曲線C1和曲線C2公共點的一個極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】試求下列函數(shù)的定義域與值域:

(1)f(x)=(x-1)2+1,x∈{-1,0,1,2,3};

(2)f(x)=(x-1)2+1;

(3)f(x)=;

(4)f(x)=x-.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】滬昆高速鐵路全線2016年12月28日開通運營.途經(jīng)鷹潭北站的、兩列列車乘務(wù)組工作人員為了了解乘坐本次列車的乘客每月需求情況,分別在兩個車次各隨機(jī)抽取了100名旅客進(jìn)行調(diào)查,下面是根據(jù)調(diào)查結(jié)果,繪制了月乘車次數(shù)的頻率分布直方圖和頻數(shù)分布表.

(1)若將頻率視為概率,月乘車次數(shù)不低于15次的稱之為“老乘客”,試問:哪一車次的“老乘客”較多,簡要說明理由;

(2)已知在次列車隨機(jī)抽到的50歲以上人員有35名,其中有10名是“老乘客”,由條件完成列聯(lián)表,并根據(jù)資料判斷,是否有的把握認(rèn)為年齡與乘車次數(shù)有關(guān),說明理由.

老乘客

新乘客

合計

50歲以上

50歲以下

合計

附:隨機(jī)變量(其中為樣本容量)

0.25

0.15

0.10

0.05

0.025

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知冪函數(shù)f(x)=x (m∈N*).

(1)試確定該函數(shù)的定義域,并指明該函數(shù)在其定義域上的單調(diào)性;

(2)若該函數(shù)還經(jīng)過點(2, ),試確定m的值,并求滿足條件f(2-a)>f(a-1)的實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是定義在區(qū)間上的奇函數(shù),且若對于任意的

(1)判斷并證明函數(shù)的單調(diào)性;

(2)解不等式;

(3)若對于任意的 恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線L的參數(shù)方程為 為參數(shù)).在以原點 為極點, 軸正半軸為極軸的極坐標(biāo)中,圓C的方程為

)寫出直線L的傾斜角和圓C的直角坐標(biāo)方程;

)若點 P坐標(biāo)為,圓C與直線L交于 A,B兩點,求|PA||PB|的值.

的值.

查看答案和解析>>

同步練習(xí)冊答案