【題目】已知函數(shù)是定義在區(qū)間上的奇函數(shù),且若對(duì)于任意的

(1)判斷并證明函數(shù)的單調(diào)性;

(2)解不等式

(3)若對(duì)于任意的, 恒成立,求實(shí)數(shù)的取值范圍.

【答案】(1)增函數(shù)(2)(3)

【解析】試題分析; 1)設(shè) ,由已知可得,分,及兩種情況可知 的大小,借助單調(diào)性的定義可得結(jié)論;
(2)利用函數(shù)單調(diào)性可得去掉不等式中的符號(hào) ,轉(zhuǎn)化為具體不等式,再考慮到函數(shù)定義域可得不等式組,解出即可;
(3)要使得對(duì)于任意的x∈[-1,1],a∈[-1,1]都有f(x)≤-2at+2恒成立,只需對(duì)任意的a∈[-1,1]時(shí)-2at+2≥f(x)max,整理后化為關(guān)于a的一次函數(shù)可得不等式組;

試題解析;(1)函數(shù)在區(qū)間上是增函數(shù):

證明:由題意可知,對(duì)于任意的

可設(shè),則,即,

當(dāng)時(shí), ,

∴函數(shù)在區(qū)間上是增函數(shù);

當(dāng)時(shí), ,∴函數(shù)在區(qū)間上是增函數(shù);

綜上:函數(shù)在區(qū)間上是增函數(shù).

(2)由(1)知函數(shù)在區(qū)間上是增函數(shù),

又由,

,解得

∴不等式的解集為;

∵函數(shù)在區(qū)間上是增函數(shù),且,

要使得對(duì)于任意的x∈[﹣1,1],a∈[﹣1,1]都有f(x)≤﹣2at+2恒成立,

只需對(duì)任意的a∈[﹣1,1]時(shí),即﹣恒成立,

,此時(shí)可以看做的一次函數(shù),且在a∈[﹣1,1]時(shí)y≥0恒成立,

因此只需要,解得,

∴實(shí)數(shù)t的取值范圍為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在等差數(shù)列{an}中,a1=1,S5=-15.

(1) 求數(shù)列{an}的通項(xiàng)公式;

(2) 若數(shù)列{an}的前k項(xiàng)和Sk=-48,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓C的極坐標(biāo)方程為,直線的參數(shù)方程為.若直線與圓C相交于不同的兩點(diǎn)P,Q.

(Ⅰ)寫(xiě)出圓C的直角坐標(biāo)方程,并求圓心的坐標(biāo)與半徑;

(Ⅱ)若弦長(zhǎng)|PQ|=4,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市為了制定合理的節(jié)電方案,供電局對(duì)居民用電情況進(jìn)行了調(diào)查,通過(guò)抽樣,獲得了某年200戶(hù)居民每戶(hù)的月均用電量(單位:度),將數(shù)據(jù)按照,分成9組,制成了如圖所示的頻率直方圖.

(1)求直方圖中的值并估計(jì)居民月均用電量的中位數(shù);

(2)從樣本里月均用電量不低于700度的用戶(hù)中隨機(jī)抽取4戶(hù),用表示月均用電量不低于800度的用戶(hù)數(shù),求隨機(jī)變量的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(10分)設(shè)分別是先后拋擲一枚骰子得到的點(diǎn)數(shù),用隨機(jī)變量表示方程

實(shí)根的個(gè)數(shù)(重根按一個(gè)計(jì)).

)求方程有實(shí)根的概率;

)求的分布列和數(shù)學(xué)期望;

)求在先后兩次出現(xiàn)的點(diǎn)數(shù)中有5的條件下,方程有實(shí)根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中石化集團(tuán)獲得了某地深海油田區(qū)塊的開(kāi)采權(quán),集團(tuán)在該地區(qū)隨機(jī)初步勘探了部分兒口井,取得了地質(zhì)資料.進(jìn)入全面勘探時(shí)期后,集團(tuán)按網(wǎng)絡(luò)點(diǎn)來(lái)布置井位進(jìn)行全面勘探. 由于勘探一口井的費(fèi)用很高,如果新設(shè)計(jì)的井位與原有井位重合或接近,便利用舊井的地質(zhì)資料,不必打這口新井,以節(jié)約勘探費(fèi)用.勘探初期數(shù)據(jù)資料見(jiàn)如表:

(Ⅰ)1~6號(hào)舊井位置線性分布,借助前5組數(shù)據(jù)求得回歸直線方程為,求,并估計(jì)的預(yù)報(bào)值;

(Ⅱ)現(xiàn)準(zhǔn)備勘探新井,若通過(guò)1、3、5、7號(hào)井計(jì)算出的的值(精確到0.01)相比于(Ⅰ)中的值之差不超過(guò)10%,則使用位置最接近的已有舊井,否則在新位置打開(kāi),請(qǐng)判斷可否使用舊井?

(參考公式和計(jì)算結(jié)果:

(Ⅲ)設(shè)出油量與勘探深度的比值不低于20的勘探并稱(chēng)為優(yōu)質(zhì)井,那么在原有井號(hào)1~6的出油量不低于50L的井中任意勘探3口井,求恰好2口是優(yōu)質(zhì)井的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知兩個(gè)正數(shù)a,b,可按規(guī)則擴(kuò)充為一個(gè)新數(shù)c,在ab,c三個(gè)數(shù)中取兩個(gè)較大的數(shù),按上述規(guī)則擴(kuò)充得到一個(gè)新數(shù),依次下去,將每擴(kuò)充一次得到一個(gè)新數(shù)稱(chēng)為一次操作.

(1)若a=1,b=3,按上述規(guī)則操作三次,擴(kuò)充所得的數(shù)是_____________;

(2)若p>q>0,經(jīng)過(guò)6次操作后擴(kuò)充所得的數(shù)為m,n為正整數(shù)),

m,n的值分別為____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩支籃球隊(duì)進(jìn)行一局比賽,甲獲勝的概率為0.6,若采用三局兩勝制舉行一次比賽,現(xiàn)采用隨機(jī)模擬的方法估計(jì)乙獲勝的概率.

先利用計(jì)算器或計(jì)算機(jī)生成09之間取整數(shù)值的隨機(jī)數(shù),用0,1,2,3,4,5表示甲獲勝;6,7,8,9表示乙獲勝,這樣能體現(xiàn)甲獲勝的概率為0.6.因?yàn)椴捎萌謨蓜僦,所以?/span>3個(gè)隨機(jī)數(shù)作為一組.例如,產(chǎn)生30組隨機(jī)數(shù).

034 743 738 636 964 736 614 698 637 162 332 616 804 560 111 410 959 774 246 762 428 114 572 042 533 237 322 707 360 751

據(jù)此估計(jì)乙獲勝的概率為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知平面αβ,在平面α內(nèi)任取一條直線a,在β內(nèi)總存在直線ba,則αβ的位置關(guān)系是____(填“平行”或“相交”).

查看答案和解析>>

同步練習(xí)冊(cè)答案