若m,n>0,且m+2n=1,則
1
m
+
1
n
的最小值為
 
考點(diǎn):基本不等式
專題:不等式的解法及應(yīng)用
分析:利用“乘1法”與基本不等式的性質(zhì)即可得出.
解答: 解:∵m,n>0,且m+2n=1,
1
m
+
1
n
=(m+2n)(
1
m
+
1
n
)
=3+
2n
m
+
m
n
≥3+2
2n
m
m
n
=3+2
2
,當(dāng)且僅當(dāng)m=
2
n=
2
-1時(shí)取等號(hào).
1
m
+
1
n
的最小值為3+2
2

故答案為:3+2
2
點(diǎn)評(píng):本題考查了“乘1法”與基本不等式的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足an+1=
2an,0<an
1
2
2an-1,
1
2
an<1.
,若a1=
6
7
,則a40=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=2cos(-2x+
π
4
)的最小正周期為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若{an}為等差數(shù)列,Sn是其前n項(xiàng)的和,且S13=
26π
3
,則cosa7=( 。
A、±
3
B、-
3
C、-
1
2
D、-
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知{an}{bn}滿足
lim
n→∞
an
=A
lim
n→∞
bn
=B,其中A,B為確定的常數(shù),給出兩個(gè)命題:甲:對(duì)于任意n∈N*,an<bn則A<B;乙:若A<B則存在n0∈N*當(dāng)n>n0時(shí),an<bn恒成立.(  )
A、甲是假命題,乙是假命題
B、甲是假命題,乙是真命題
C、甲是真命題,乙是假命題
D、甲是真命題,乙是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且f(x)=f(x-2),當(dāng)x∈[0,1]時(shí),f(x)=x+1,f(
3
2
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知復(fù)數(shù)z1,z2在復(fù)平面上對(duì)應(yīng)的點(diǎn)分別為A(l,2),B(-1,3),則
z2
z1
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)f(x)=x+
x-1
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={0,3,a2},B={1,a},若A∪B={0,1,2,3,4},則實(shí)數(shù)a的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案