函數(shù)f(x)=2cos(-2x+
π
4
)的最小正周期為
 
考點(diǎn):三角函數(shù)的周期性及其求法
專題:三角函數(shù)的求值
分析:直接利用余弦函數(shù)的周期的公式求解即可.
解答: 解:函數(shù)f(x)=2cos(-2x+
π
4
)的最小正周期為:
2

故答案為:π
點(diǎn)評(píng):本題考查三角函數(shù)的周期的求法,基本知識(shí)的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0>b且c∈R,則下列不等式中一定成立的是( 。
A、a2>b2
B、ac>bc
C、ac2>bc2
D、
1
a
1
b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P(-1,
3
),O為坐標(biāo)原點(diǎn),點(diǎn)Q是圓O:x2+y2=1上 一點(diǎn),且
OQ
PQ
=0,則|
OP
+
OQ
|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正項(xiàng)等比數(shù)列{an}滿足a6=a7-2a5,若存在兩項(xiàng)am,an使得
aman
=2a2
,則
1
m
+
4
n
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn)分別為F1(-1,0),F(xiàn)2(1,0),P為橢圓上一點(diǎn),Q為上頂點(diǎn),
F1M
=2
MP
,
PO
F2M
=0.
(1)當(dāng)橢圓離心率e=
1
2
時(shí),若直線過點(diǎn)(0,-
3
7
)且與橢圓交于A,B(不同于Q)兩點(diǎn),求∠AQB;
(2)求橢圓離心率e的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求tan17°tan43°+tan17°tan30°+tan43°tan30°的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)復(fù)數(shù)z滿足(z+i)(1+i)=3+i(i是虛數(shù)單位),則|z|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若m,n>0,且m+2n=1,則
1
m
+
1
n
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:“x2-x>0”,命題q:“x>2”,則命題p是命題q的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案