【題目】已知函數(shù) .
(I)求函數(shù) 在點(diǎn) 處的切線方程;
(II)求函數(shù) 的極值.
【答案】解:(I) , .
則 ,則函數(shù) 在點(diǎn) 處的切線方程為 ,化簡得 .
(II)令 ,解得 .
當(dāng) 變化時, , 的變化情況如下表:
0 | |||||
+ | 0 | - | 0 | + | |
單調(diào)遞增 | 1 | 單調(diào)遞減 | 單調(diào)遞增 |
因此,當(dāng) 時, 有極大值,并且極大值為 ;
當(dāng) 時, 有極小值,并且極小值為 .
【解析】(1)首先求出函數(shù)的導(dǎo)函數(shù)計算出f(1)、f'(1)求出切線方程即可。(2)求出函數(shù)的導(dǎo)函數(shù)解出關(guān)于導(dǎo)函數(shù)的不等式即可求出函數(shù)的單調(diào)區(qū)間,進(jìn)而求出函數(shù)的極值即可。
【考點(diǎn)精析】利用函數(shù)的極值與導(dǎo)數(shù)對題目進(jìn)行判斷即可得到答案,需要熟知求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形是正方形, , , , 都是等邊三角形, 、、、分別是線段、、、的中點(diǎn),分別以、、、為折痕將四個等邊三角形折起,使得、、、四點(diǎn)重合于一點(diǎn),得到一個四棱錐.對于下面四個結(jié)論:
①與為異面直線; ②直線與直線所成的角為
③平面; ④平面平面;
其中正確結(jié)論的個數(shù)有( )
A. 個 B. 個 C. 個 D. 個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線 的參數(shù)方程 ( 為參數(shù)),曲線 的極坐標(biāo)方程為 .
(1)將曲線 的參數(shù)方程化為普通方程,將曲線 的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)試問曲線 , 是否相交?若相交,請求出公共弦的長;若不相交,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xoy中,直線l的參數(shù)方程為 (t為參數(shù), ),以坐標(biāo)原點(diǎn)o為極點(diǎn),x軸的正半軸為極軸,并取相同的長度單位,建立極坐標(biāo)系.曲線
(1)若直線l曲線 相交于點(diǎn) , , ,證明: 為定值;
(2)將曲線 上的任意點(diǎn) 作伸縮變換 后,得到曲線 上的點(diǎn) ,求曲線 的內(nèi)接矩形 周長的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè){an}是公比大于1的等比數(shù)列,Sn為數(shù)列{an}的前n項(xiàng)和,已知S3=7,
且a1+3,3a2,a3+4構(gòu)成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng);
(2)令,n=1,2,…,求數(shù)列{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)區(qū)間D=[﹣3,3],定義在D上的函數(shù)f(x)=ax3+bx+1(a>0,b∈R),集合A={a|x∈D,f(x)≥0}.
(1)若b= ,求集合A;
(2)設(shè)常數(shù)b<0 ①討論f(x)的單調(diào)性;
②若b<﹣1,求證:A=.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知隨機(jī)變量 的取值為不大于 的非負(fù)整數(shù)值,它的分布列為:
0 | 1 | 2 | n | ||
其中 ( )滿足: ,且 .
定義由 生成的函數(shù) ,令 .
(I)若由 生成的函數(shù) ,求 的值;
(II)求證:隨機(jī)變量 的數(shù)學(xué)期望 , 的方差 ;
( )
(Ⅲ)現(xiàn)投擲一枚骰子兩次,隨機(jī)變量 表示兩次擲出的點(diǎn)數(shù)之和,此時由 生成的函數(shù)記為 ,求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè) 是兩個平面, 是兩條直線,有下列四個命題:
⑴如果 ,那么 .
⑵如果 ,那么 .
⑶如果 ,那么 .
其中正確命題的個數(shù)是( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩點(diǎn)A(-2,0),B(0,1),點(diǎn)P是圓(x-1)2+y2=1上任意一點(diǎn),則△PAB面積的最大值是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com