【題目】已知雙曲線的離心率為2,左右焦點(diǎn)分別為,,過(guò)右焦點(diǎn)且垂直于x軸的直線與雙曲線交于A,B兩點(diǎn),且的周長(zhǎng)為.
(1)求雙曲線C的方程;
(2)已知直線,點(diǎn)P是雙曲線C上的動(dòng)點(diǎn),求點(diǎn)P到直線l的距離的最小值.
【答案】(1);(2)最小值為
【解析】
(1)根據(jù)題意可得,,根據(jù)周長(zhǎng)可得,結(jié)合,求解可得,,所以曲線C的方程為:;
(2)求出與l平行且與C相切的直線,利用平行直線間距離公式可得最小值.
(1)由題得,所以,,
又,所以,,,
因?yàn)?/span>的周長(zhǎng)為,
所以①,
又因?yàn)?/span>②,
①-②,得,
即,解得,,
所以曲線C的方程為:;
(2)設(shè)與直線平行且與C相切的直線方程為,
由得,
則,解得.
設(shè)點(diǎn)P到直線l的距離為d,則根據(jù)平行線間的距離公式可得,,
所以當(dāng)時(shí),d取最小值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓: 的離心率,且過(guò)點(diǎn).
(1)求橢圓的方程;
(2)如圖,過(guò)橢圓的右焦點(diǎn)作兩條相互垂直的直線交橢圓分別于,且滿足, ,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列是等差數(shù)列,是等比數(shù)列,,.
(1)求和的通項(xiàng)公式;
(2)若,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某高校在2018年的自主招生考試成績(jī)中隨機(jī)抽取100名學(xué)生的筆試成績(jī),折合成標(biāo)準(zhǔn)分后,最高分是10分.按成績(jī)共分成五組:第一組[0,2),第二組[2,4),第三組[4,6),第四組[6,8),第五組[8,10),得到的頻率分布直方圖如圖所示:
(1)分別求第三,四,五組的頻率;
(2)該學(xué)校在第三,四,五組中用分層抽樣的方法抽取6名同學(xué).
①已知甲同學(xué)和乙同學(xué)均在第三組,求甲、乙同時(shí)被選中的概率
②若在這6名同學(xué)中隨機(jī)抽取2名,設(shè)第4組中有X名同學(xué),求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(α為參數(shù)),將C上每一點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉?lái)的3倍,得曲線C1.以O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.
(1)求C1的極坐標(biāo)方程
(2)設(shè)M,N為C1上兩點(diǎn),若OM⊥ON,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓的左右焦點(diǎn)分別為,,在橢圓L上的點(diǎn)滿足,且,,成等差數(shù)列.
(1)求橢圓L的方程;
(2)過(guò)點(diǎn)A作兩條傾斜角互補(bǔ)的直線,,它們與橢圓L的另一個(gè)交點(diǎn)分別為B,C,試問(wèn)直線BC的斜率是否是定值?若是,求出該斜率;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是2017年第一季度五省GDP情況圖,則下列陳述中不正確的是( )
A.2017年第一季度GDP增速由高到低排位第5的是浙江。
B.與去年同期相比,2017年第一季度的GDP總量實(shí)現(xiàn)了增長(zhǎng).
C.2017年第一季度GDP總量和增速由高到低排位均居同一位的省只有1個(gè)
D.去年同期河南省的GDP總量不超過(guò)4000億元.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知斜三棱柱ABC﹣A1B1C1的底面是正三角形,點(diǎn)M、N分別是B1C1和A1B1的中點(diǎn),AA1=AB=BM=2,∠A1AB=60°.
(1)求證:BN⊥平面A1B1C1;
(2)求二面角A1﹣AB﹣M的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列的前項(xiàng)和為,,.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列滿足:
對(duì)于任意,都有成立.
①求數(shù)列的通項(xiàng)公式;
②設(shè)數(shù)列,問(wèn):數(shù)列中是否存在三項(xiàng),使得它們構(gòu)成等差數(shù)列?若存在,求出這三項(xiàng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com