【題目】已知橢圓的左,右焦點分別為,上頂點為, 是斜邊長為的等腰直角三角形,若直線與橢圓交于不同兩點.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)當(dāng)時,求線段的長度;
(Ⅲ)是否存在,使得?若存在,求出的值;若不存在,請說明理由.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓內(nèi)一點,直線過點且與圓交于,兩點.
(1)求圓的圓心坐標和面積;
(2)若直線的斜率為,求弦的長;
(3)若圓上恰有三點到直線的距離等于,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】交強險是車主必須為機動車購買的險種.若普通6座以下私家車投保交強險第一年的費用(基準保費)統(tǒng)一為a元,在下一年續(xù)保時,實行的是費率浮動機制,保費與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費率也就越高,具體浮動情況如表:
交強險浮動因素和浮動費率比率表 | ||
浮動因素 | 浮動比率 | |
A1 | 上一個年度未發(fā)生有責(zé)任道路交通事故 | 下浮10% |
A2 | 上兩個年度未發(fā)生有責(zé)任道路交通事故 | 下浮20% |
A3 | 上三個及以上年度未發(fā)生有責(zé)任道路交通事故 | 下浮30% |
A4 | 上一個年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故 | 0% |
A5 | 上一個年度發(fā)生兩次及兩次以上有責(zé)任道路交通事故 | 上浮10% |
A6 | 上一個年度發(fā)生有責(zé)任道路交通死亡事故 | 上浮30% |
某機構(gòu)為了研究某一品牌普通6座以下私家車的投保情況,隨機抽取了60輛車齡已滿三年的該品牌同型號私家車的下一年續(xù)保時的情況,統(tǒng)計得到了下面的表格:
類型 | A1 | A2 | A3 | A4 | A5 | A6 |
數(shù)量 | 10 | 5 | 5 | 20 | 15 | 5 |
以這60輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:
(Ⅰ)按照我國《機動車交通事故責(zé)任強制保險條例》汽車交強險價格的規(guī)定a=950.記X為某同學(xué)家的一輛該品牌車在第四年續(xù)保時的費用,求X的分布列與數(shù)學(xué)期望值;(數(shù)學(xué)期望值保留到個位數(shù)字)
(Ⅱ)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基本保費的車輛記為事故車.假設(shè)購進一輛事故車虧損5000元,一輛非事故車盈利10000元:
①若該銷售商購進三輛(車齡已滿三年)該品牌二手車,求這三輛車中至多有一輛事故車的概率;
②若該銷售商一次購進100輛(車齡已滿三年)該品牌二手車,求他獲得利潤的期望值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的對稱軸為坐標軸,頂點是坐標原點,準線方程為,直線與拋物線相交于不同的, 兩點.
(1)求拋物線的標準方程;
(2)如果直線過拋物線的焦點,求的值;
(3)如果,直線是否過一定點,若過一定點,求出該定點;若不過一定點,試說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E: + =1(a>b>0)經(jīng)過點(﹣1, ),其離心率e= .
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)動直線l:y=kx+m與橢圓C相切,切點為T,且l與直線x=﹣4相交于點S.
試問:在x軸上是否存在一定點,使得以ST為直徑的圓恒過該定點?若存在,求出該點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市電視臺為了宣傳舉辦問答活動,隨機對該市15~65歲的人群抽樣了人,回答問題計結(jié)果如下圖表所示:
(1)分別求出的值;
(2)從第2,3,4組回答正確的人中用分層抽樣的方法抽取6人,則第2,3,4組每組各抽取多少人?
(3)在(2)的前提下,電視臺決定在所抽取的6人中隨機抽取2人頒發(fā)幸運獎,求所抽取的人中第2組至少有1人獲得幸運獎的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖四棱錐P﹣ABCD中,PA⊥平面ABCD,AD∥BC,AD⊥CD,且AD=CD=2 ,BC=4 ,PA=2,點M在線段PD上.
(1)求證:AB⊥PC.
(2)若二面角M﹣AC﹣D的大小為45°,求BM與平面PAC所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知AB,CD是圓O中兩條互相垂直的直徑,兩個小圓與圓O以及AB,CD均相切,則往圓O內(nèi)投擲一個點,該點落在陰影部分的概率為( )
A.12﹣8
B.3﹣2
C.8﹣5
D.6﹣4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓經(jīng)過點,離心率為,左、右焦點分別為.
(1)求橢圓的方程;
(2)若直線與橢圓交于A,B兩點,與以為直徑的圓交于C,D兩點,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com