【題目】設(shè)函數(shù)),,

(Ⅰ) 試求曲線在點(diǎn)處的切線l與曲線的公共點(diǎn)個(gè)數(shù);(Ⅱ) 若函數(shù)有兩個(gè)極值點(diǎn),求實(shí)數(shù)a的取值范圍.

(附:當(dāng),x趨近于0時(shí), 趨向于

【答案】(1)兩個(gè)公共點(diǎn);(2)

【解析】試題分析:1計(jì)算出,根據(jù)點(diǎn)斜式可得切線方程,將切線方程與聯(lián)立可得方程,設(shè),對(duì)其求導(dǎo),可得其在內(nèi)的單調(diào)性,結(jié)合, ,可得零點(diǎn)個(gè)數(shù);2題意等價(jià)于至少有兩不同根,當(dāng)時(shí), 的根,根據(jù)圖象的交點(diǎn)可知有一個(gè)零點(diǎn),除去同根;當(dāng)顯然不合題意;當(dāng)時(shí),題意等價(jià)于至少有兩不同根,對(duì)其求導(dǎo)判斷單調(diào)性,考慮極值與兩端的極限值可得結(jié)果.

試題解析:1 ,

切線的斜率為,

∴切線的方程為,即,

聯(lián)立,得

設(shè),則

,得,

上單調(diào)遞增,可知上單調(diào)遞減,

, ,所以 ,

∴方程有兩個(gè)根:1,從而切線與曲線有兩個(gè)公共點(diǎn).

(2)由題意知至少有兩不同根,

設(shè)

①當(dāng)時(shí), 的根,

)恰有一個(gè)公共點(diǎn),可知恰有一根

,不合題意,

∴當(dāng)時(shí),檢驗(yàn)可知的兩個(gè)極值點(diǎn);

②當(dāng)時(shí), 僅一根,所以不合題意;--9

③當(dāng)時(shí),需至少有兩不同根,

,得,所以上單調(diào)遞增,

可知上單調(diào)遞減,

因?yàn)?/span> 趨近于0時(shí), 趨向于,且時(shí), ,

由題意知,需,即,解得

綜上知,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為正方形,PD⊥平面ABCD,PD=AB,E,F(xiàn),G,H分別為PC、PD、BC、PA的中點(diǎn).
求證:(1)PA∥平面EFG;
(2)DH⊥平面EFG.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某醫(yī)學(xué)院欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,該協(xié)會(huì)分別到氣象局與某醫(yī)院抄錄了1到6月份每月10號(hào)的晝夜溫差情況與因患感冒而就診的人數(shù),得到數(shù)據(jù)資料見下表:

該院確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

(Ⅰ)求選取的2組數(shù)據(jù)恰好是不相鄰的兩個(gè)月的概率;

(Ⅱ)已知選取的是1月與6月的兩組數(shù)據(jù).

(1)請(qǐng)根據(jù)2到5月份的數(shù)據(jù),求出就診人數(shù)關(guān)于晝夜溫差的線性回歸方程;

(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2人,則認(rèn)為得到的線性回歸方程是理想的,試問該協(xié)會(huì)所得線性回歸方程是否理想?

(參考公式和數(shù)據(jù):

)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】車間計(jì)劃每天生產(chǎn)卡車模型、賽車模型、小汽車模型這三種玩具共100個(gè),已知生產(chǎn)一個(gè)卡車模型需5分鐘,生產(chǎn)一個(gè)賽車模型需7分鐘,生產(chǎn)個(gè)小汽車模型需4分鐘,且生產(chǎn)一個(gè)卡車模型可獲利潤(rùn)8元,生產(chǎn)一個(gè)賽車模型可獲利潤(rùn)9元,生產(chǎn)一個(gè)小汽車模型可獲利潤(rùn)6元.若總生產(chǎn)時(shí)間不超過10小時(shí),該公司合理分配生產(chǎn)任務(wù)使每天的利潤(rùn)最大,則最大利潤(rùn)是______________元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C經(jīng)過點(diǎn),且圓心在直線上,又直線與圓C交于P,Q兩點(diǎn).

1)求圓C的方程;

2)若,求實(shí)數(shù)的值;

(3)過點(diǎn)作直線,且交圓CM,N兩點(diǎn),求四邊形的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三棱錐的三組相對(duì)棱(相對(duì)的棱是指三棱錐中成異面直線的一組棱)分別相等,且長(zhǎng)分別為,其中,則該三棱錐體積的最大值為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線與拋物線相切,且與軸的交點(diǎn)為,點(diǎn).若動(dòng)點(diǎn)與兩定點(diǎn)所構(gòu)成三角形的周長(zhǎng)為6.

(Ⅰ) 求動(dòng)點(diǎn)的軌跡的方程;

(Ⅱ) 設(shè)斜率為的直線交曲線兩點(diǎn),當(dāng),且位于直線的兩側(cè)時(shí),證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,正方體ABCD﹣A1B1C1D1的棱長(zhǎng)為8cm,M,N,P分別是AB,A1D1 , BB1的中點(diǎn).
(1)畫出過M,N,P三點(diǎn)的平面與平面A1B1C1D1的交線以及與平面BB1C1C的交線;
(2)設(shè)過M,N,P三點(diǎn)的平面與B1C1交于Q,求PQ的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某漁業(yè)公司今年年初用98萬元購進(jìn)一艘漁船用于捕撈,第一年需要各種費(fèi)用12萬元.從第二年起包括維修費(fèi)在內(nèi)每年所需費(fèi)用比上一年增加4萬元.該船每年捕撈總收入50萬元.

(1)問捕撈幾年后總盈利最大,最大是多少?

(2)問捕撈幾年后的平均利潤(rùn)最大,最大是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案