(本小題滿分12分)某投資公司投資甲、乙兩個項目所獲得的利潤分別是P(億
元)和Q(億元),它們與投資額t(億元)的關(guān)系有經(jīng)驗公式P=,Q=t.今該公司將5
億元投資這兩個項目,其中對甲項目投資x(億元),投資這兩個項目所獲得的總利潤為y(億
元).求:(1)y關(guān)于x的函數(shù)表達式;
(2)總利潤的最大值.

解:(1)根據(jù)題意,得y=(5-x),x∈[0,5].
(2)令t=,t∈[0,],則x=,
y=-t+=-(t-2)2.
因為2∈[0,],所以當(dāng)=2,即x=時,
y最大值.所以總利潤的最大值是億元.

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分13分)
函數(shù)
(1)求證函數(shù)在區(qū)間上存在唯一的極值點,并用二分法求函數(shù)取得極值時相應(yīng)的近似值(誤差不超過);(參考數(shù)據(jù),
(2)當(dāng)時,若關(guān)于的不等式恒成立,試求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)若函數(shù).
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間。
(2)求在區(qū)間[-3,4]上的值域

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)已知函數(shù),
若函數(shù)在(0,4)上為單調(diào)函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知函數(shù)f(x)=kx3-3(k+1)x2-2k2+4,若f(x)的單調(diào)減區(qū)間為(0,4).
(1)求k的值;
(2)對任意的t∈[-1,1],關(guān)于x的方程2x2+5x+a=f(t)總有實根,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分)已知函數(shù)
(I)求函數(shù)的單調(diào)區(qū)間;
(II)若,在(1,2)上為單調(diào)遞
減函數(shù)。求實數(shù)a的范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),其中
(1)若曲線在點處的切線方程為y=3x+1,求函數(shù)的解析式;
(2)討論函數(shù)的單調(diào)性;[來

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

函數(shù)f(x)=2sinxcosx是( 。

A.最小正周期為2π的奇函數(shù) B.最小正周期為2π的偶函數(shù) 
C.最小正周期為π的奇函數(shù) D.最小正周期為π的偶函數(shù) 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)的圖象過點,且在內(nèi)
單調(diào)遞減,在上單調(diào)遞增.
(1)求的解析式;
(2)若對于任意的,不等式恒成立,試問
這樣的是否存在.若存在,請求出的范圍,若不存在,說明理由

查看答案和解析>>

同步練習(xí)冊答案