【題目】已知函數(shù), .
(1)當時,求的單調區(qū)間;
(2)若,求的取值范圍.
【答案】(1)單調減區(qū)間是,單調增區(qū)間是.(2) .
【解析】試題分析:
(1)當時, , ,結合導函數(shù)與原函數(shù)之間的關系可得的單調減區(qū)間是,單調增區(qū)間是.
(2)分類討論:
①當時,符合題意;
②當時, ,由題意可得存在,使得,即,據(jù)此可得a.
據(jù)此可得,實數(shù)的取值范圍
試題解析:
(1)由題意得,當時,
,
∴當時, ,當時, ,
∴的單調減區(qū)間是,單調增區(qū)間是.
(2)①當時, ,顯然符合題意;
②當時, ,令, 恒成立.
∴該方程有兩個不同實根,且一正一負,即存在,使得,即,∴當時, ,當時, ,
∴,
∵,∴,即,
由于在上是增函數(shù),∴.
由于得,設,則.
∴函數(shù)在上單調遞減,∴.
綜上所述,實數(shù)的取值范圍
科目:高中數(shù)學 來源: 題型:
【題目】設m個正數(shù)a1 , a2 , …,am(m≥4,m∈N*)依次圍成一個圓圈.其中a1 , a2 , a3 , …ak﹣1 , ak(k<m,k∈N*)是公差為d的等差數(shù)列,而a1 , am , am﹣1 , …,ak+1 , ak是公比為2的等比數(shù)列.
(1)若a1=d=2,k=8,求數(shù)列a1 , a2 , …,am的所有項的和Sm;
(2)若a1=d=2,m<2015,求m的最大值;
(3)是否存在正整數(shù)k,滿足a1+a2+…+ak﹣1+ak=3(ak+1+ak+2+…+am﹣1+am)?若存在,求出k值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E為BC的中點,F在棱AC上,且AF=3FC
(1)求三棱錐D-ABC的體積
(2)求證:平面DAC⊥平面DEF;
(3)若M為DB中點,N在棱AC上,且CN=CA,求證:MN∥平面DEF
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知某智能手機制作完成之后還需要依次通過三道嚴格的審核程序,第一道審核、第二道審核、第三道審核通過的概率分別為,,,每道程序是相互獨立的,且一旦審核不通過就停止審核,每部手機只有三道程序都通過才能出廠銷售.
(1)求審核過程中只通過兩道程序的概率;
(2)現(xiàn)有3部該智能手機進入審核,記這3部手機可以出廠銷售的部數(shù)為,求的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】計算下面各題
(1)求過點A(2,3),且垂直于直線3x+2y﹣1=0的直線方程;
(2)已知直線l過原點,且點M(5,0)到直線l的距離為3,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市對創(chuàng)“市級示范性學!钡募住⒁覂伤鶎W校進行復查驗收,對辦學的社會滿意度一項評價隨機訪問了20為市民,這20位市民對這兩所學校的評分(評分越高表明市民的評價越好)的數(shù)據(jù)如下:
甲校:58,66,71,58,67,72,82,92,83,86,67,59,86,72,78,59,68,69,73,81;
乙校:90,80,73,65,67,69,81,85,82,88,89,86,86,78,98,95,96,91,76,69,.
檢查組將成績分成了四個等級:成績在區(qū)間的為等,在區(qū)間的為等,在區(qū)間的為等,在區(qū)間為等.
(1)請用莖葉圖表示上面的數(shù)據(jù),并通過觀察莖葉圖,對兩所學校辦學的社會滿意度進行比較,寫出兩個統(tǒng)計結論;
(2)根據(jù)所給數(shù)據(jù),以事件發(fā)生的頻率作為相應事件發(fā)生的概率,求乙校得分的等級高于甲校得分的等級的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線()與軸交于點,動圓與直線相切,并且與圓相外切,
(1)求動圓的圓心的軌跡的方程;
(2)若過原點且傾斜角為的直線與曲線交于兩點,問是否存在以為直徑的圓經過點?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是橢圓的左、右焦點, 為坐標原點,點在橢圓上,線段與軸的交點滿足.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)圓是以為直徑的圓,一直線與圓相切,并與橢圓交于不同的兩點、,當,且滿足時,求的面積的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com