【題目】在△ABC中,.
(1)求△ABM與△ABC的面積之比;
(2)若N為AB中點,與交于點P,且 (x,y∈R),求x+y的值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=ax2+bx+c(a>0),
(1)當a=1,b=2,若|f(x)|﹣2=0有且只有兩個不同的實根,求實數(shù)c的取值范圍;
(2)設(shè)方程f(x)=x的兩個實根為x1 , x2 , 且滿足0<t<x1 , x2﹣x1> ,試判斷f(t)與x1的大小,并給出理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地環(huán)保部門跟蹤調(diào)查一種有害昆蟲的數(shù)量.根據(jù)調(diào)查數(shù)據(jù),該昆蟲的數(shù)量(萬只)與時間(年)(其中)的關(guān)系為.為有效控制有害昆蟲數(shù)量、保護生態(tài)環(huán)境,環(huán)保部門通過實時監(jiān)控比值(其中為常數(shù),且)來進行生態(tài)環(huán)境分析.
(1)當時,求比值取最小值時的值;
(2)經(jīng)過調(diào)查,環(huán)保部門發(fā)現(xiàn):當比值不超過時不需要進行環(huán)境防護.為確保恰好3年不需要進行保護,求實數(shù)的取值范圍.(為自然對數(shù)的底, )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為了普及奧運會知識和提高學(xué)生參加體育運動的積極性,舉行了一次奧運知識競賽.隨機抽取了30名學(xué)生的成績,繪成如圖所示的莖葉圖,若規(guī)定成績在75分以上(包括75分)的學(xué)生定義為甲組,成績在75分以下(不包括75分)定義為乙組.
(Ⅰ)在這30名學(xué)生中,甲組學(xué)生中有男生7人,乙組學(xué)生中有女生12人,試問有沒有90%的把握認為成績分在甲組或乙組與性別有關(guān);
(Ⅱ)記甲組學(xué)生的成績分別為x1 , x2 , …,x12 , 執(zhí)行如圖所示的程序框圖,求輸出的S的值;
(Ⅲ)競賽中,學(xué)生小張、小李同時回答兩道題,小張答對每道題的概率均為 ,小李答對每道題的概率均為 ,兩人回答每道題正確與否相互獨立.記小張答對題的道數(shù)為a,小李答對題的道數(shù)為b,X=|a﹣b|,寫出X的概率分布列,并求出X的數(shù)學(xué)期望.
附:K2= ;其中n=a+b+c+d
獨立性檢驗臨界表:
P(K2>k0) | 0.100 | 0.050 | 0.010 |
k0 | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=xlnx,g(x)= .
(Ⅰ)記F(x)=f(x)﹣g(x),判斷F(x)在區(qū)間(1,2)內(nèi)零點個數(shù)并說明理由;
(Ⅱ)記(Ⅰ)中的F(x)在(1,2)內(nèi)的零點為x0 , m(x)=min{f(x),g(x)},若m(x)=n(n∈R)在(1,+∞)有兩個不等實根x1 , x2(x1<x2),判斷x1+x2與2x0的大小,并給出對應(yīng)的證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分8分)某班50名學(xué)生在一次數(shù)學(xué)測試中,成績?nèi)拷橛?/span>50與100之間,將測試結(jié)果按如下方式分成五組:第一組[50,60),第二組[60,70),…,第五組[90,100].如圖所示是按上述分組方法得到的頻率分布直方圖.
(Ⅰ)若成績大于或等于60且小于80,認為合格,求該班在這次數(shù)學(xué)測試中成績合格的人數(shù);
(Ⅱ)從測試成績在[50,60)∪[90,100]內(nèi)的所有學(xué)生中隨機抽取兩名同學(xué),設(shè)其測試成績分別為m、n,求事件“|m﹣n|>10”概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為了普及奧運會知識和提高學(xué)生參加體育運動的積極性,舉行了一次奧運知識競賽.隨機抽取了30名學(xué)生的成績,繪成如圖所示的莖葉圖,若規(guī)定成績在75分以上(包括75分)的學(xué)生定義為甲組,成績在75分以下(不包括75分)定義為乙組.
(Ⅰ)在這30名學(xué)生中,甲組學(xué)生中有男生7人,乙組學(xué)生中有女生12人,試問有沒有90%的把握認為成績分在甲組或乙組與性別有關(guān);
(Ⅱ)記甲組學(xué)生的成績分別為x1 , x2 , …,x12 , 執(zhí)行如圖所示的程序框圖,求輸出的S的值;
(Ⅲ)競賽中,學(xué)生小張、小李同時回答兩道題,小張答對每道題的概率均為 ,小李答對每道題的概率均為 ,兩人回答每道題正確與否相互獨立.記小張答對題的道數(shù)為a,小李答對題的道數(shù)為b,X=|a﹣b|,寫出X的概率分布列,并求出X的數(shù)學(xué)期望.
附:K2= ;其中n=a+b+c+d
獨立性檢驗臨界表:
P(K2>k0) | 0.100 | 0.050 | 0.010 |
k0 | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的三個內(nèi)角A、B、C的對邊分別是a、b、c,其面積S=a2﹣(b﹣c)2 . 若a=2,則BC邊上的中線長的取值范圍是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com