【題目】函數(shù)f(x)=(x2﹣2x﹣3)的單調(diào)減區(qū)間是( 。
A.(3,+∞)
B.(1,+∞)
C.(﹣∞,1)
D.(﹣∞,﹣1)

【答案】A
【解析】解:要使函數(shù)f(x)=(x2﹣2x﹣3)的解析式有意義
x2﹣2x﹣3>0
解得x<﹣1,或x>3
當(dāng)x∈(﹣∞,﹣1)時(shí),內(nèi)函數(shù)為減函數(shù),外函數(shù)也為減函數(shù),則復(fù)合函數(shù)f(x)=(x2﹣2x﹣3)為增函數(shù);
當(dāng)x∈(3,+∞)時(shí),內(nèi)函數(shù)為增函數(shù),外函數(shù)為減函數(shù),則復(fù)合函數(shù)f(x)=(x2﹣2x﹣3)為減函數(shù);
故函數(shù)f(x)=(x2﹣2x﹣3)的單調(diào)減區(qū)間是(3,+∞)
故選A
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解復(fù)合函數(shù)單調(diào)性的判斷方法的相關(guān)知識(shí),掌握復(fù)合函數(shù)f[g(x)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律:“同增異減”.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市公租房的房源位于A,B,C,D四個(gè)片區(qū),設(shè)每位申請(qǐng)人只申請(qǐng)其中一個(gè)片區(qū)的房源,且申請(qǐng)其中任一個(gè)片區(qū)的房源是等可能的,在該市的甲、乙、丙三位申請(qǐng)人中:
(1)求恰有1人申請(qǐng)A片區(qū)房源的概率;
(2)用x表示選擇A片區(qū)的人數(shù),求x的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在各項(xiàng)均為正數(shù)的等比數(shù)列{an}中,a1=2,且2a1 , a3 , 3a2成等差數(shù)列.
(Ⅰ) 求等比數(shù)列{an}的通項(xiàng)公式;
(Ⅱ) 若數(shù)列{bn}滿足bn=11﹣2log2an , 求數(shù)列{bn}的前n項(xiàng)和Tn的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某程序框圖如圖所示,現(xiàn)輸入如下四個(gè)函數(shù),則可以輸出的函數(shù)是(

A.f(x)=x2
B.f(x)=
C.f(x)=ex
D.f(x)=sinx

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: (a>b>0)的離心率為 ,短軸一個(gè)端點(diǎn)到右焦點(diǎn)的距離為
(1)求橢圓C的方程;
(2)設(shè)直線l與橢圓C交于A、B兩點(diǎn),坐標(biāo)原點(diǎn)O到直線l的距離為 ,求△AOB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)f(x)滿足f(0)=2和f(x+1)﹣f(x)=2x﹣1對(duì)任意實(shí)數(shù)x都成立.
(1)求函數(shù)f(x)的解析式;
(2)當(dāng)t∈[﹣1,3]時(shí),求y=f(2t)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知全集U=R,集合A={x|4≤2x<128},B={x|1<x≤6},M={x|a﹣3<x<a+3}.
(1)求A∩UB;
(2)若M∪UB=R,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=cos4x+sin2x,下列結(jié)論中錯(cuò)誤的是(
A.f(x)是偶函數(shù)
B.函f(x)最小值為
C. 是函f(x)的一個(gè)周期
D.函f(x)在(0, )內(nèi)是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線C1:y= x2(p>0)的焦點(diǎn)與雙曲線C2 ﹣y2=1的右焦點(diǎn)的連線交C1于第一象限的點(diǎn)M,若C1在點(diǎn)M處的切線平行于C2的一條漸近線,則p=(
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案