【題目】如圖,已知橢圓,點(diǎn)是它的兩個(gè)頂點(diǎn),過(guò)原點(diǎn)且斜率為的直線與線段相交于點(diǎn),且與橢圓相交于兩點(diǎn).
(1)若,求的值;
(2)求四邊形面積的最大值.
【答案】(1)或;(2).
【解析】
試題(1)先由兩點(diǎn)式求得直線的方程,然后設(shè)的方程為.設(shè),,,聯(lián)立直線與橢圓的方程,得到間的關(guān)系,再由與點(diǎn)在線段上求得的值;(2)由點(diǎn)到直線的距離公式分別求得點(diǎn)到線段的距離,從而得到四邊形的面積的表面式,進(jìn)而求得其最大值.
試題解析:(1)依題設(shè)得橢圓的頂點(diǎn),則直線的方程為.
設(shè)直線的方程為.設(shè),其中,
聯(lián)立直線與橢圓的方程,消去,得方程.(3分)
故,由知,,
得,由點(diǎn)在線段上,知,得,
所以,化簡(jiǎn),得,解得或.
(2)根據(jù)點(diǎn)到直線的距離公式,知點(diǎn)到線段的距離分別為,
又,
所以四邊形的面積為
,
當(dāng)且僅當(dāng),即時(shí),取等號(hào),
所以四邊形面積的最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),若以該直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為(其中為常數(shù)).
(1)求曲線和的直角坐標(biāo)方程;
(2)若曲線和有且僅有一個(gè)公共點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】整數(shù)集就像一片浩瀚無(wú)邊的海洋,充滿了無(wú)盡的奧秘.古希臘數(shù)學(xué)家畢達(dá)哥拉斯發(fā)現(xiàn)220和284具有如下性質(zhì):220的所有真因數(shù)之和恰好等于284,同時(shí)284的所有真因數(shù)之和也等于220,他把具有這種性質(zhì)的兩個(gè)整數(shù)叫做一對(duì)“親和數(shù)”,“親和數(shù)”的發(fā)現(xiàn)吸引了古今中外無(wú)數(shù)數(shù)學(xué)愛好者的研究熱潮.已知220和284,1184和1210,2924和2620是3對(duì)“親和數(shù)”,把這六個(gè)數(shù)隨機(jī)分成兩組,一組2個(gè)數(shù),另一組4個(gè)數(shù),則220和284在同一組的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2020年春節(jié)前后,一場(chǎng)突如其來(lái)的新冠肺炎疫情在武漢出現(xiàn)并很快地傳染開來(lái)(已有證據(jù)表明2019年10月、11月國(guó)外已經(jīng)存在新冠肺炎病毒),人傳人,傳播快,傳播廣,病亡率高,對(duì)人類生命形成巨大危害.在中華人民共和國(guó),在中共中央、國(guó)務(wù)院強(qiáng)有力的組織領(lǐng)導(dǎo)下,全國(guó)人民萬(wàn)眾一心抗擊、防控新冠肺炎,疫情早在3月底已經(jīng)得到了非常好的控制(累計(jì)病亡人數(shù)3869人).然而,國(guó)外因國(guó)家體制、思想觀念與中國(guó)的不同,防控不力,新冠肺炎疫情越來(lái)越嚴(yán)重.據(jù)美國(guó)約翰斯·霍普金斯大學(xué)每日下午6時(shí)公布的統(tǒng)計(jì)數(shù)據(jù),選取5月6日至5月10日的美國(guó)的新冠肺炎病亡人數(shù)如下表(其中t表示時(shí)間變量,日期“5月6日”、“5月7日”對(duì)應(yīng)于“t=6"、“t=7",依次下去),由下表求得累計(jì)病亡人數(shù)與時(shí)間的相關(guān)系數(shù)r=0.98.
(1)在5月6日~10日,美國(guó)新冠肺炎病亡人數(shù)與時(shí)間(日期)是否呈現(xiàn)線性相關(guān)性?
(2)選擇對(duì)累計(jì)病亡人數(shù)四舍五入后個(gè)位、十位均為0的近似數(shù),求每日累計(jì)病亡人數(shù)y隨時(shí)間t變化的線性回歸方程;
(3)請(qǐng)估計(jì)美國(guó)5月11日新冠肺炎病亡累計(jì)人數(shù),請(qǐng)初步預(yù)測(cè)病亡人數(shù)達(dá)到9萬(wàn)的日期.
附:回歸方程中斜率和截距最小二乘估計(jì)公式分別為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,ABCD為菱形,平面ABCD,連接AC,BD交于點(diǎn)O,,,E是棱PC上的動(dòng)點(diǎn),連接DE.
(1)求證:平面平面;
(2)當(dāng)面積的最小值是4時(shí),求此時(shí)點(diǎn)E到底面ABCD的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合.由集合P中所有的點(diǎn)組成的圖形如圖中陰影部分所示,中間白色部分形如美麗的“水滴”.給出下列結(jié)論:
①“水滴”圖形與y軸相交,最高點(diǎn)記為A,則點(diǎn)A的坐標(biāo)為;
②在集合P中任取一點(diǎn)M,則M到原點(diǎn)的距離的最大值為3;
③陰影部分與y軸相交,最高點(diǎn)和最低點(diǎn)分別記為C,D,則;
④白色“水滴”圖形的面積是.
其中正確的有______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求的普通方程和的直角坐標(biāo)方程;
(2)直線與軸的交點(diǎn)為,經(jīng)過(guò)點(diǎn)的直線與曲線交于兩點(diǎn),若,求直線的傾斜角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)拋物線的焦點(diǎn)為,點(diǎn)是上一點(diǎn),且線段的中點(diǎn)坐標(biāo)為.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)若,為拋物線上的兩個(gè)動(dòng)點(diǎn)(異于點(diǎn)),且,求點(diǎn)的橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)業(yè)水平測(cè)試成績(jī)按照考生原始成績(jī)從高到低分為五個(gè)等級(jí).某班共有名學(xué)生且全部選考物理、化學(xué)兩科,這兩科的學(xué)業(yè)水平測(cè)試成績(jī)?nèi)绫硭?/span>.該班學(xué)生中,這兩科等級(jí)均為的學(xué)生有人,這兩科中僅有一科等級(jí)為的學(xué)生,其另外一科等級(jí)為.則該班( )
等級(jí) 科目 | A | B | C | D | E |
物理 | 10 | 16 | 9 | 1 | 0 |
化學(xué) | 8 | 19 | 7 | 2 | 0 |
A.物理化學(xué)等級(jí)都是的學(xué)生至多有人
B.物理化學(xué)等級(jí)都是的學(xué)生至少有人
C.這兩科只有一科等級(jí)為且最高等級(jí)為的學(xué)生至多有人
D.這兩科只有一科等級(jí)為且最高等級(jí)為的學(xué)生至少有人
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com