精英家教網 > 高中數學 > 題目詳情

【題目】在直角坐標系xOy中,曲線C的方程為.在以原點O為極點,x軸正半軸為極軸的極坐標系中,P的極坐標為,直線l過點P.

1)若直線lOP垂直,求直線l的直角標方程:

2)若直線l與曲線C交于A,B兩點,且,求直線l的傾斜角.

【答案】12

【解析】

1)直接利用轉換關系,把參數方程極坐標方程和直角坐標方程之間進行轉換求出結果.

2)利用一元二次方程根和系數關系式的應用和三角函數關系式的恒等變換和正弦函數的值的應用求出結果.

1P的極坐標為,轉換為直角坐標為(),

所以直線OP的斜率為,直線l的斜率為

所以直線l的方程為,整理得

2)把直線的方程轉換為參數方程為t為參數),代入曲線C的方程為的方程為.

所以,

則:cos2θ+2sin2θ2,由于cos2θ+sin2θ1,

所以sinθ1(負值舍去),

所以,

故直線的傾斜角為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,在四棱柱中,平面ABCD,底面ABCD是矩形,,M的中點.

1)求證:D1M//平面BDC1;

2)若棱上存在點Q,滿足與平面所成角的正弦值為,求異面直線BQ所成角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】高中生在被問及“家,朋友聚集的地方,個人空間”三個場所中“感到最幸福的場所在哪里?”這個問題時,從洛陽的高中生中,隨機抽取了55人,從上海的高中生中隨機抽取了45人進行答題.洛陽高中生答題情況是選擇家的占、選擇朋友聚集的地方的占、選擇個人空間的占.上海高中生答題情況是:選擇朋友聚集的地方的占、選擇家的占、選擇個人空間的占.

(1)請根據以上調查結果將下面列聯(lián)表補充完整,并判斷能否有的把握認為“戀家在家里感到最幸福”與城市有關

在家里最幸福

在其它場所最幸福

合計

洛陽高中生

上海高中生

合計

(2) 從被調查的不“戀家”的上海學生中,用分層抽樣的方法選出4人接受進一步調查,從被選出的4 人中隨機抽取2人到洛陽交流學習,求這2人中含有在“個人空間”感到幸福的學生的概率.

,其中d.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數方程為為參數),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為

(Ⅰ)求直線的普通方程和曲線的直角坐標方程;

(Ⅱ)設為曲線上的點,,垂足為,若的最小值為,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在矩形ABCD中,AB1,AD2,△ABD沿對角線BD翻折,形成三棱錐ABCD

①當時,三棱錐ABCD的體積為;

②當面ABD⊥面BCD時,ABCD;

③三棱錐ABCD外接球的表面積為定值.

以上命題正確的是_____

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某種昆蟲的日產卵數和時間變化有關,現收集了該昆蟲第1天到第5天的日產卵數據:

x

1

2

3

4

5

日產卵數y(個)

6

12

25

49

95

對數據初步處理后得到了如圖所示的散點圖和表中的統(tǒng)計量的值.

15

55

15.94

54.75

1)根據散點圖,利用計算機模擬出該種昆蟲日產卵數y關于x的回歸方程為(其中e為自然對數的底數),求實數a,b的值(精確到0.1);

2)根據某項指標測定,若日產卵數在區(qū)間(e6e8)上的時段為優(yōu)質產卵期,利用(1)的結論,估計在第6天到第10天中任取兩天,其中恰有1天為優(yōu)質產卵期的概率.

附:對于一組數據(v1μ1),(v2μ2),,(vnμn),其回歸直線的斜率和截距的最小二乘估計分別為,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,底面是平行四邊形,,,,設平面平面.

1)證明:;

2)若平面平面,求四棱錐的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2018年反映社會現實的電影《我不是藥神》引起了很大的轟動,治療特種病的創(chuàng)新藥研發(fā)成了當務之急.為此,某藥企加大了研發(fā)投入,市場上治療一類慢性病的特效藥品的研發(fā)費用(百萬元)和銷量(萬盒)的統(tǒng)計數據如下:

研發(fā)費用(百萬元)

2

3

6

10

13

15

18

21

銷量(萬盒)

1

1

2

2.5

3.5

3.5

4.5

6

1)根據數據用最小二乘法求出的線性回歸方程(系數用分數表示,不能用小數);

2)該藥企準備生產藥品的三類不同的劑型,,,并對其進行兩次檢測,當第一次檢測合格后,才能進行第二次檢測.第一次檢測時,三類劑型,合格的概率分別為,,第二次檢測時,三類劑型,合格的概率分別為,.兩次檢測過程相互獨立,設經過兩次檢測后,三類劑型合格的種類數為,求的分布列與數學期望.

附:(12.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】橢圓的離心率是,過點做斜率為的直線,橢圓與直線交于兩點,當直線垂直于軸時

(Ⅰ)求橢圓的方程;

(Ⅱ)當變化時,在軸上是否存在點,使得是以為底的等腰三角形,若存在求出的取值范圍,若不存在說明理由.

查看答案和解析>>

同步練習冊答案