【題目】某縣大潤發(fā)超市為了惠顧新老顧客,決定在2019年元旦來臨之際舉行“慶元旦,迎新年”的抽獎派送禮品活動.為設計一套趣味性抽獎送禮品的活動方案,該超市面向該縣某高中學生征集活動方案.該中學某班數(shù)學興趣小組提供的方案獲得了征用.方案如下:將一個的正方體各面均涂上紅色,再把它分割成64個相同的小正方體.經過攪拌后,從中任取兩個小正方體,記它們的著色面數(shù)之和為,記抽獎中獎的禮金為.
(Ⅰ)求;
(Ⅱ)凡是元旦當天在超市購買物品的顧客,均可參加抽獎.記抽取的兩個小正方體著色面數(shù)之和為6,設為一等獎,獲得價值50元禮品;記抽取的兩個小正方體著色面數(shù)之和為5,設為二等獎,獲得價值30元禮品;記抽取的兩個小正方體著色面數(shù)之和為4,設為三等獎,獲得價值10元禮品,其他情況不獲獎.求某顧客抽獎一次獲得的禮金的分布列與數(shù)學期望.
科目:高中數(shù)學 來源: 題型:
【題目】為檢查某工廠所生產的8萬臺電風扇的質量,隨機抽取20臺,其無故障連續(xù)使用時限(單位:h)統(tǒng)計如下:
分組 | 頻數(shù) | 頻率 | 頻率/組距 |
1 | 0.05 | 0.0025 | |
1 | 0.05 | 0.0025 | |
2 | 0.10 | 0.0050 | |
3 | 0.15 | 0.0075 | |
4 | 0.20 | 0.0100 | |
6 | 0.30 | 0.0150 | |
2 | 0.10 | 0.0050 | |
1 | 0.05 | 0.0025 | |
合計 | 20 | 1 | 0.050 |
(1)作出頻率分布直方圖;
(2)估計8萬臺電風扇中無故障連續(xù)使用時限不低于280h的有多少臺;
(3)假設同一組中的數(shù)據用該組區(qū)間的中點值代替,估計這8萬臺電風扇的平均無故障連續(xù)使用時限.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,在直角梯形中,,,點在上,且,將沿折起,使得平面平面(如圖2).為中點
(1)求證:;
(2)求四棱錐的體積;
(3)在線段上是否存在點,使得平面?若存在,求的值;若不存在,請說明理由
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從含有兩件正品a1,a2和一件次品b1的3件產品中每次任取1件,
每次取出后不放回,連續(xù)取兩次.
(1)求取出的兩件產品中恰有一件次品的概率;
(2)如果將“每次取出后不放回”這一條件換成“每次取出后放回”,則取出的兩件產品中恰有一件次品的概率是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓,記為與原點距離等于的全體直線所成的集合.問:是否存在常數(shù),使得對任意的直線,均存在、,、分別過 與橢圓的交點、,且有?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,以坐標原點為中心,以坐標軸為對稱軸的橢圓C經過點M(2,1),N(,-).
(1)求橢圓C的標準方程;
(2)經過點M作傾斜角互補的兩條直線,分別與橢圓C相交于異于M點的A,B兩點,求直線AB的斜率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某專賣店為了對新產品進行合理定價,將該產品按不同的單價試銷,調查統(tǒng)計如下表:
售價(元) | 4 | 5 | 6 | 7 | 8 |
周銷量(件) | 90 | 85 | 83 | 79 | 73 |
(1)求周銷量y(件)關于售價x(元)的線性回歸方程;
(2)按(1)中的線性關系,已知該產品的成本為2元/件,為了確保周利潤大于598元,則該店應該將產品的售價定為多少?
參考公式:,.
參考數(shù)據:,
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com