【題目】國慶期間,某旅行社組團去風(fēng)景區(qū)旅游,若旅行團人數(shù)在 人或 人以下,每人需交費用為 元;若旅行團人數(shù)多于 人,則給予優(yōu)惠:每多 人,人均費用減少 元,直到達(dá)到規(guī)定人數(shù) 人為止.旅行社需支付各種費用共計 元.
Ⅰ 寫出每人需交費用 關(guān)于人數(shù) 的函數(shù);
Ⅱ 旅行團人數(shù)為多少時,旅行社可獲得最大利潤?
【答案】(1)(2)當(dāng)旅行社人數(shù)為 時,旅行社可獲得最大利潤.
【解析】試題分析:
(1)由題意分類討論可得每人需交費用 關(guān)于人數(shù) 的函數(shù)為分段函數(shù):
(2)由(1)中的結(jié)論求得利潤函數(shù),
據(jù)此可得當(dāng)旅行社人數(shù)為 時,旅行社可獲得最大利潤.
試題解析:
(1) 當(dāng) 時,;
當(dāng) 時,,即
(2) 設(shè)旅行社所獲利潤為 元.
當(dāng) 時,;
當(dāng) ,;即
因為當(dāng) 時, 為增函數(shù),所以 時,.
當(dāng) 時,,即 時,.所以當(dāng)旅行社人數(shù)為 時,旅行社可獲得最大利潤.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)是定義在[-1,0)∪(0,1]上的奇函數(shù),當(dāng)x∈[-1,0)時,f(x)=2x+ (x∈R).
(1)當(dāng)x∈(0,1]時,求f(x)的解析式.
(2)判斷f(x)在(0,1]上的單調(diào)性,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了讓貧困地區(qū)的孩子們過一個溫暖的冬天,某校陽光志愿者社團組織“這個冬天不再冷”冬衣募捐活動,共有50名志愿者參與.志愿者的工作內(nèi)容有兩項:①到各班做宣傳,倡議同學(xué)們積極捐獻(xiàn)冬衣;②整理、打包募捐上來的衣物.每位志愿者根據(jù)自身實際情況,只參與其中的某一項工作.相關(guān)統(tǒng)計數(shù)據(jù)如下表所示:
(1)如果用分層抽樣的方法從參與兩項工作的志愿者中抽取5人,再從這5人中選2人,那么“至少有1人是參與班級宣傳的志愿者”的概率是多少?
(2)若參與班級宣傳的志愿者中有12名男生,8名女生,從中選出2名志愿者,用表示所選志愿者中的女生人數(shù),寫出隨機變量的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分12分)已知
(1)求函數(shù)的單調(diào)區(qū)間;
(2)設(shè),若存在使得成立,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的反函數(shù)為, .
(1)求的解析式,并指出的定義域;
(2)判斷的奇偶性,并說明理由;
(3)設(shè),解關(guān)于的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求 的單調(diào)區(qū)間;
(2)若曲線 與直線只有一個交點, 求實數(shù) 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)2008年至2014年中,每年的居民人均純收入y(單位:千元)的數(shù)據(jù)如下表:
年 份 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 |
年份代號t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均純收入y | 2.7 | 3.6 | 3.3 | 4.6 | 5.4 | 5.7 | 6.2 |
對變量t與y進(jìn)行相關(guān)性檢驗,得知t與y之間具有線性相關(guān)關(guān)系.
(1)求y關(guān)于t的線性回歸方程;
(2)預(yù)測該地區(qū)2017年的居民人均純收入.
附:回歸直線的斜率和截距的最小二乘估計公式分別為:
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將圓的一組等分點分別涂上紅色或藍(lán)色,從任意一點開始,按逆時針方向依次記錄個點的顏色,稱為該圓的一個“階段序”,當(dāng)且僅當(dāng)兩個階色序?qū)?yīng)位置上的顏色至少有一個不相同時,稱為不同的階色序.若某圓的任意兩個“階段序”均不相同,則稱該圓為“階魅力圓”.“3階魅力圓”中最多可有的等分點個數(shù)為( )
A.4 B.6
C. 8 D.10
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正三棱柱中,,點為的中點,點在線段上.
(Ⅰ)當(dāng)時,求證;
(Ⅱ)是否存在點,使二面角等于60°?若存在,求的長;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com