沿對(duì)角線AC將正方形ABCD折成直二面角后,則AC與BD所成的角等于_______

試題分析:如下圖,取AC、BD、BC的中點(diǎn)依次為E、F、G,

連接BD、EF、EG、FG,
則FG∥CD,EG∥AB,
故∠FGE為異面直線AB與CD所成的角(或其補(bǔ)角),
設(shè)正方形的邊長(zhǎng)為2個(gè)單位,則FG=1,EG=1,EF=1,
從而∠FGE=,故答案為:
點(diǎn)評(píng):利用三角形中位線定理,證明線FG∥CD,EG∥AB,結(jié)合異面直線夾角的定義,利用平移法構(gòu)造∠FGE為異面直線AB與CD所成的角,是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分14分)
如圖,已知平面QBC與直線PA均垂直于所在平面,且PA=AB=AC.

(Ⅰ)求證:PA∥平面QBC;
(Ⅱ)若,求二面角Q-PB-A的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在正方體中,、分別是的中點(diǎn),則異面直線所成角的大小是__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

是兩條不同的直線,是三個(gè)不同的平面,則下列命題中的真命題是(   )
A.若,則B.
C.若,則D.若,,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

a、b表示兩條不同直線,α、β表示兩個(gè)不同平面,則下列命題正確的是(    
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知兩條不同的直線,兩個(gè)不同的平面,則下列命題中正確的是(     )
A.若
B.若
C.若
D.若

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知直線m,n與平面α,β,給出下列三個(gè)命題:
①若m∥α,n∥α,則m∥n;
②若m∥α,n⊥α,則n⊥m;
③若m⊥α,m∥β,則α⊥β.
其中真命題的個(gè)數(shù)是______個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在直三棱柱中,,,的中點(diǎn).

(1)求證:平行平面;
(2)求二面角的余弦值;
(3)試問(wèn)線段上是否存在點(diǎn),使角?若存在,確定點(diǎn)位置,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)
如圖,四棱錐S-ABCD中,SA⊥平面ABCD,底面ABCD為直角梯形,AD∥BC,∠BAD=90 ,且BC=2AD=2,AB=4,SA=3.

(1)求證:平面SBC⊥平面SAB;
(2)若E、F分別為線段BC、SB上的一點(diǎn)(端點(diǎn)除外),滿足.(
①求證:對(duì)于任意的,恒有SC∥平面AEF;
②是否存在,使得△AEF為直角三角形,若存在,求出所有符合條件的值;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案