【題目】下列命題:
①命題“x∈R,x2+x+1=0”的否定是“x∈R,x2+x+1≠0”;
②若A={x|x>0},B={x|x≤﹣1},則A∩(RB)=A;
③函數(shù)f(x)=sin(ωx+φ)(ω>0)是偶函數(shù)的充要條件是φ=kπ+ (k∈Z);
④若非零向量 , 滿足 =λ , =λ (λ∈R),則λ=1.
其中正確命題的序號有
【答案】②③
【解析】解:①∵“全稱命題”的否定一定是“存在性命題”.
命題“x∈R,x2+x+1=0”的否定應是“x∈R,x2+x+1≠0”;①錯誤.②CRB={x|x>﹣1},A={x|x>0},∴A∩(CRB)={x|x>0}=A ②正確.③函數(shù)f(x)=sin(ωx+φ)(ω>0)是偶函數(shù)的充要條件是f(x)圖象關于y軸對稱,
即有f(0)=±1,∴sinφ=±1,φ=kπ+ (k∈Z).③正確.④由已知,非零向量 , 滿足 =λ =λ(λ )=λ2 ,λ2=1,λ=±1.④錯誤.
所以答案是:②③.
【考點精析】掌握命題的真假判斷與應用是解答本題的根本,需要知道兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關系.
科目:高中數(shù)學 來源: 題型:
【題目】已知圓心為C的圓過點A(0,﹣6)和B(1,﹣5),且圓心在直線l:x﹣y+1=0上.
(1)求圓心為C的圓的標準方程;
(2)過點M(2,8)作圓的切線,求切線方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設f(x)是定義在R上以2為周期的偶函數(shù),已知x∈(0,1)時,f(x)= (1﹣x),則函數(shù)f(x)在(1,2)上( )
A.是減函數(shù),且f(x)>0
B.是增函數(shù),且f(x)>0
C.是增函數(shù),且f(x)<0
D.是減函數(shù),且f(x)<0
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在正三棱柱ABC﹣A1B1C1中,若AB1⊥BC1 , 則下列關于直線A1C和AB1 , BC1的關系的判斷正確的為( )
A.A1C和AB1 , BC1都垂直
B.A1C和AB1垂直,和BC1不垂直
C.A1C和AB1 , BC1都不垂直
D.A1C和AB1不垂直,和BC1垂直
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=sin(ωx+φ)﹣b(ω>0,0<φ<π)的圖象兩對稱軸之間的距離是 ,若將f(x)的圖象先向由平移 個單位,再向上平移 個單位,所得函數(shù)g(x)為奇函數(shù).
(1)求f(x)的解析式;
(2)求f(x)的單調遞減區(qū)間和對稱中心.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,直三棱柱ABC﹣A1B1C1 , 底面△ABC中,CA=CB=1,∠BCA=90°,棱AA1=2,M,N分別是A1B1、A1A的中點.
(1)求 的長;
(2)求cos( )的值;
(3)求證A1B⊥C1M.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,點M,N分別為線段A1B,AC1的中點.
(1)求證:MN∥平面BB1C1C;
(2)若D在邊BC上,AD⊥DC1 , 求證:MN⊥AD.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)的定義域是(0,+∞),對于任意正實數(shù)m,n恒有f(mn)=f(m)+f(n),且當x>1時,f(x)>0,f(2)=1.
(1)求 的值;
(2)求證:f(x)在(0,+∞)上是增函數(shù);
(3)求方程4sinx=f(x)的根的個數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若直線 l1和l2 是異面直線,l1在平面 α內,l2在平面β內,l是平面α與平面β的交線,則下列命題正確的是( )
A.l與l1 , l2都不相交
B.l與l1 , l2都相交
C.l至多與l1 , l2中的一條相交
D.l至少與l1 , l2中的一條相交
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com