精英家教網 > 高中數學 > 題目詳情

【題目】已知函數 為奇函數.
(1)求a的值;
(2)判斷函數f(x)的單調性,并根據函數單調性的定義證明.

【答案】
(1)解:∵函數f(x)是奇函數,且f(x)的定義域為R;

;

∴a=﹣1;


(2)f(x)= ;

函數f(x)在定義域R上單調遞增.

理由:設x1<x2,則:

∵x1<x2;

;

;

∴f(x1)<f(x2);

∴函數f(x)在定義域R上單調遞增.


【解析】(1)f(x)的定義域為R,且f(x)為奇函數,所以一定有f(0)=0,代入可得a=-1,(2)根據函數單調性的定義進行判斷,設x1<x2,對f(x1),f(x2)進行作差即可得出函數f(x)在定義域R上單調遞增.
【考點精析】關于本題考查的奇偶性與單調性的綜合,需要了解奇函數在關于原點對稱的區(qū)間上有相同的單調性;偶函數在關于原點對稱的區(qū)間上有相反的單調性才能得出正確答案.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=sinxsin x. (Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)的單調遞增區(qū)間.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】經銷商經銷某種農產品,在一個銷售季度內,每售出1t該產品獲利潤500元,未售出的產品,每1t虧損300元.根據歷史資料,得到銷售季度內市場需求量的頻率分布直方圖,如圖所示.經銷商為下一個銷售季度購進了130t該農產品.以X(單位:t,100≤X≤150)表示下一個銷售季度內的市場需求量,T(單位:元)表示下一個銷售季度內經銷該農產品的利潤.

(Ⅰ)將T表示為X的函數;
(Ⅱ)根據直方圖估計利潤T不少于57000元的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=(x2+ax+b)ex , 當b<1時,函數f(x)在(﹣∞,﹣2),(1,+∞)上均為增函數,則 的取值范圍是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=log2(|x﹣1|+|x+2|﹣a).
(Ⅰ)當a=7時,求函數f(x)的定義域;
(Ⅱ)若關于x的不等式f(x)≥3的解集是R,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)滿足f(x+1)=﹣f(x﹣1),且當x∈(0,2)時,f(x)=2x , 則f(log280)=

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 ,且f(1)=1,f(﹣2)=4.
(1)求a、b的值;
(2)已知定點A(1,0),設點P(x,y)是函數y=f(x)(x<﹣1)圖象上的任意一點,求|AP|的最小值,并求此時點P的坐標;
(3)當x∈[1,2]時,不等式 恒成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數
(1)判斷函數f(x)的奇偶性,并說明理由;
(2)證明:f(x)在(﹣1,+∞)上為增函數;
(3)證明:方程f(x)=0沒有負數根.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=(a2﹣3a+3)ax是指數函數,
(1)求f(x)的表達式;
(2)判斷F(x)=f(x)﹣f(﹣x)的奇偶性,并加以證明
(3)解不等式:loga(1﹣x)>loga(x+2)

查看答案和解析>>

同步練習冊答案