已知函數f(x)=ax+x2,g(x)=xln a,a>1.
(1)求證:函數F(x)=f(x)-g(x)在(0,+∞)上單調遞增;
(2)若函數y=-3有四個零點,求b的取值范圍;
(3)若對于任意的x1,x2∈[-1,1]時,都有|F(x2)-F(x1)|≤e2-2恒成立,求a的取值范圍.
(1)見解析(2)(2-,0)∪(2+,+∞)(3)(1,e2]
【解析】(1)∵F(x)=f(x)-g(x)=ax+x2-xln a,
∴F′(x)=ax·ln a+2x-ln a=(ax-1)ln a+2x.
∵a>1,x>0,∴ax-1>0,ln a>0,2x>0,
∴當x∈(0,+∞)時,F′(x)>0,即函數F(x)在區(qū)間(0,+∞)上單調遞增.
(2)由(1)知當x∈(-∞,0)時,F′(x)<0,
∴F(x)在(-∞,0)上單調遞減,在(0,+∞)上單調遞增.
∴F(x)的最小值為F(0)=1.由-3=0,
得F(x)=b-+3或F(x)=b--3,
∴要使函數y=-3有四個零點,只需
即b->4,即 >0,
解得b>2+或2- <b<0.
故b的取值范圍是(2-,0)∪(2+,+∞).
(3)∵?x1,x2∈[-1,1],由(1)知F(x)在(-∞,0)上單調遞減,在(0,+∞)上單調遞增,
∴F(x)min=F(0)=1.
從而再來比較F(-1)與F(1)的大小即可.
F(-1)=+1+ln a,F(1)=a+1-ln a,
∴F(1)-F(-1)=a--2ln a.
令H(x)=x--2ln x(x>0),
則H′(x)=1+-== >0,
∴H(x)在(0,+∞)上單調遞增.
∵a>1,∴H(a)>H(1)=0.∴F(1)>F(-1).
∴|F(x2)-F(x1)|的最大值為|F(1)-F(0)|=a-ln a,
∴要使|F(x2)-F(x1)|≤e2-2恒成立,只需a-ln a≤e2-2即可.令h(a)=a-ln a(a>1),h′(a)=1- >0,∴h(a)在(1,+∞)上單調遞增.∵h(e2)=e2-2,∴只需h(a)≤h(e2),即1<a≤e2.故a的取值范圍是(1,e2]
科目:高中數學 來源:2014年高考數學(文)二輪復習專題提升訓練江蘇專用階段檢測5練習卷(解析版) 題型:填空題
在圓x2+y2=4所圍成的區(qū)域內隨機取一個點P(x,y),則|x|+|y|≤2的概率為________.
查看答案和解析>>
科目:高中數學 來源:2014年高考數學(文)二輪復習專題提升訓練江蘇專用階段檢測3練習卷(解析版) 題型:填空題
設y=f(x)是一次函數,f(0)=1,且f(1),f(4),f(13)成等比數列,則f(2)+f(4)+…+f(2n)=________.
查看答案和解析>>
科目:高中數學 來源:2014年高考數學(文)二輪復習專題提升訓練江蘇專用階段檢測2練習卷(解析版) 題型:填空題
在△ABC中,若AB=1,AC=|+|=||,則=______.
查看答案和解析>>
科目:高中數學 來源:2014年高考數學(文)二輪復習專題提升訓練江蘇專用階段檢測2練習卷(解析版) 題型:填空題
函數y=Asin(ωx+φ) 的圖象如圖所示,則f(0)=________.
查看答案和解析>>
科目:高中數學 來源:2014年高考數學(文)二輪復習專題提升訓練江蘇專用階段檢測1練習卷(解析版) 題型:解答題
已知函數f(x)=.
(1)確定y=f(x)在(0,+∞)上的單調性;
(2)若a>0,函數h(x)=xf(x)-x-ax2在(0,2)上有極值,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源:2014年高考數學(文)二輪復習專題提升訓練江蘇專用階段檢測1練習卷(解析版) 題型:填空題
若y=f(x)是定義在R上周期為2的周期函數,且f(x)是偶函數,當x∈[0,1]時,f(x)=2x-1,則函數g(x)=f(x)-log3|x|的零點個數為________.
查看答案和解析>>
科目:高中數學 來源:2014年高考數學(文)二輪復習專題提升訓練江蘇專用9練習卷(解析版) 題型:填空題
已知等比數列{an}為遞增數列,且a3+a7=3,a2a8=2,則=________.
查看答案和解析>>
科目:高中數學 來源:2014年高考數學(文)二輪復習專題提升訓練江蘇專用5練習卷(解析版) 題型:填空題
函數f(x)的定義域是R,f(0)=2,對任意x∈R,f(x)+f′(x)>1,則不等式ex·f(x)>ex+1的解集為______.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com