如圖,在圓錐中,已知,⊙O的直徑,的中點,的中點.

(1)證明:平面平面
(2)求二面角的余弦值.

(1)根據(jù)題意,由于平面,則可以根據(jù)面面垂直的判定定理來得到。
(2)

解析試題分析:解法1:(1)連結(jié),因為,中點,所以
底面⊙O,底面⊙O,所以,                      2分
因為是平面內(nèi)的兩條相交直線,所以平面           4分
平面,所以平面平面.                          6分

(2)在平面中,過
由(1)知,平面平面平面=zxxk
所以平面,又,所以
在平面中,過,連接,
平面
從而,故為二面角的平面角                   9分




所以                    13分
故二面角的余弦值為                                  14分
解法2:如圖所示,以為坐標原點,所在直線分別為軸、軸,軸建立空間直角坐標系,則


                         2分
(1)設(shè)是平面的一個法向量,
則由,得
所以

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,在直三棱柱(即側(cè)棱與底面垂直的三棱柱)中,的中點
(I)求證:平面平面;
(II)求到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如左圖,四邊形中,的中點,,,,將左圖沿直線折起,使得二面角,如右圖.
(1)證明:平面;
(2)求直線與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,是圓的直徑,點在圓上,,于點
平面,,
(1)證明:
(2)求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

正方形的邊長為2,分別為邊的中點,是線段的中點,如圖,把正方形沿折起,設(shè)

(1)求證:無論取何值,不可能垂直;
(2)設(shè)二面角的大小為,當時,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖, 平面平面, 是以為斜邊的等腰直角三角形, 分別為, , 的中點, ,

(1) 設(shè)的中點, 證明:平面;
(2) 證明:在內(nèi)存在一點, 使平面, 并求點, 的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四棱錐中,,,分別為的中點.

(Ⅰ)求證:;
(Ⅱ)求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在四棱錐中,側(cè)面底面,底面是直角梯形,,,.

(Ⅰ)求證:平面;
(Ⅱ)設(shè)為側(cè)棱上一點,,試確定的值,使得二面角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在四棱錐中,,是正三角形,的交點恰好是中點,又,點在線段上,且

(1)求證:;
(2)求證:;

查看答案和解析>>

同步練習冊答案